
1

Welcome to the MIPS Assemble language section of the MIPS Software Training
Course

2

In this section I will cover

+ the usage conventions for the 32 general purpose registers

+ synthesized instructions

+ assembler optimizations

+ Common macros you can use

+ Calling conventions

+ Use of the small data section and gp-relative addressing

3

There are conventions for register usage and naming that will be used by
compilers and debuggers. When you are coding in assemble it can be easier to
understand your code if you use the common software name for registers. You can
define these yourself or you can include the file mips/regdef.h in the beginning of
your code.

Here are the register conventions;

+ Zero is a constant zero which can be read or written but will always be read as a
zero. This is not really a convention because you really cannot use it for any thing
else.

+ The at register is reserved for synthetic or macro instructions generated by the
assembler.

There is an assembler directive to stop it from being used call .no at but this could
make some macros take longer.

+ Registers v0 and v1 are used for function call return values

+ registers A0 through A3 are used for passing arguments to a function more on
this later in this section

+ t0 – t9 are temporary registers are not guaranteed to survive function call so if
the caller is using them it must save them to the stack before calling a function.

+ s0-s8 are the saved registers. These are guaranteed to survive a function call
because the called function must save them if it needs to use any of them.

+ k0-k1 are kernel registers Used by the kernel mostly for the first parts of
exception/interrupt processing if using a OS a user program should never use these
registers.

+ $gp is used as a global pointer. It will point to a location that is determined when your
application is initialized. This location in the midst of your static data section. Loads and
stores to data lying within 32K bytes of either side of the global pointer value can be
performed in a single instruction using gp as base the register. This is used differently for
the Linux OS. GP Should be saved by calling function. Example use of GP: lw v0, addr
translates to lw v0 (addr - _gp)(gp). Note _gp is the constant assigned in the linker file.

+ sp is the stack pointer must be preserved by the function being called.

+ fp is the frame pointer which is used by some languages for functions that need to create
dynamic variables. In this case the frame pointer is used to save the incoming value of the
stack pointer so the function is free to change the stack pointer. Note the frame pointer is
also know as s8 which is one of the mandatory save registers that a called function must
preserve.

+ ra is the return address register which as you have seen in the MIPS instructions section
holds the return address stored there using the jump and link instruction. This register must
be save on the stack before another function is called. You cannot use this register for
anything else.

3

4

As you have seen in the MIPS instruction section the Assembler adds macro
instructions to round out the complete instruction set available to you.

+ the assembler creates from existing machine instructions

+ with the div instruction it includes a check for divide by zero

5

As you can see here it helps simplify the task for loading immediate values.

6

The assembler allows you to write code that is more simplified I’ll show you
some simplified instructions you can write and what the assembler translates them
to.\

+ If the offset is zero then you can simplify your code and omit the offset

+ for the register offset you can let the assembler do arithmetic for you

+ as you can load a immediate data value you can also load a immediate address
value. The assembler will break the address down into hi and lo order 16 bit
pieces using multiple instructions and do the load.

+ and you can use register offset the are greater than 16 bits. In this example the
assembler will break the address down into hi and lo order 16 bit pieces using
multiple instructions and store the value.

Note: When the assembler sees the constructs %hi() and %lo() it will convert the
high or low 16 bits of

the 32 bit immediate value and correctly adjusting the resulting halfwords with
the proper sign extension.

Extra material not to be included in video dialog in case you have questions on

the use of %hi or %lo:

This is not quite the straightforward division into low and high

halfwords that it looks, because the 16-bit offset field of an lw is interpreted

as signed. So if the addr value is such that bit 15 is a 1, then the

%lo(addr) value will act as negative and we need to increment %hi(addr)

to compensate:

addr %hi(addr) %lo(addr)

0x1234.5678 0x1234 0x5678

0x1000.8000 0x1001 0x8000 (1001 0000 – 8000 = 1000 8000

6

7

It will also simplify the writing of immediate values that are larger than 16 bits.
For example

+ in using the add unsigned instruction it is straight forward when using a 16 bit
value

+ the assembler make it just as easy for to use immediate values larger than 16
bits and converts the one instruction into the three to do the job.

8

+ The assembler will optimize your assemble code by filling in the load, branch
and jump delay slots with an appropriate instruction when it can find one

+ this will cause the dissemble to look different than the code you have written

9

You can control some of the optimization s through the use of the .set directive

+ The assembler defaults to reorder which means it will control the instructions
branch and jump delay slots. It will also move instructions around to avoid load
delay stalls. If you want to hand tune some of your code you can you can tell the
assembler to leave it alone by placing a .set noreorder directive at the start of the
code you don’t want touched and then resume optimizations by using the .set
reorder directive when you want it to start optimizing again.

+ Sometimes you may have a section of code that you don’t want loads or stores
reordered or removed all together because you are reading or writing device
registers or other volatile memory locations. You can tell the assembler to not
optimize loads and stores by starting that section of code with the .set volatile
directive and then use .set novolatile when you want load store optimization to
continue.

+ If you find you need to use the assemble temporary register in a section of code
you can have the assembler give you an error message when it needs the AT
register for a macro by the .set noat directive. You can resume the use of AT for
macros by using .set at.

+ when you are tuning code you might want the assembler to use all optimizations but
warn you when it had to generate more code due to macro expansion. You can do this by
using the .set no macro directive.

9

10

You can control some of the optimization s through the use of the .set directive

+ The assembler defaults to reorder which means it will control the instructions
branch and jump delay slots. It will also move instructions around to avoid load
delay stalls. If you want to hand tune some of your code you can you can tell the
assembler to leave it alone by placing a .set noreorder directive at the start of the
code you don’t want touched and then resume optimizations by using the .set
reorder directive when you want it to start optimizing again.

+ Sometimes you may have a section of code that you don’t want loads or stores
reordered or removed all together because you are reading or writing device
registers or other volatile memory locations. You can tell the assembler to not
optimize loads and stores by starting that section of code with the .set volatile
directive and then use .set novolatile when you want load store optimization to
continue.

+ If you find you need to use the assemble temporary register in a section of code
you can have the assembler give you an error message when it needs the AT
register for a macro by the .set noat directive. You can resume the use of AT for
macros by using .set at.

+ when you are tuning code you might want the assembler to use all optimizations but
warn you when it had to generate more code due to macro expansion. You can do this by
using the .set no macro directive.

10

11

A function that does not call another function is called a Leaf function. You could
also think of it as a dead end function because it goes no where else. It can also be
used if there is no stack manipulation. For example boot code that starts a the boot
exception vector which will not return.

+ There is very little over head needed for a leaf function.

+ Since your not making any function calls you only need to worry about
preserving registers that you actually use. For example in a Leaf function you
don’t have to worry about saving the arguments

+ or the save registers because you usually can get by with using the temporary
registers

+ You can use the stack for storage as long as you preserve the stack pointer
register.

+ Remember to leave the return address in register ra and return directly to it.

12

There are several code macros you can use in the asm.h include file.

+ One of them is this covenant macro for Leaf functions. Let me explain what it
does:

+ first the .text directive tells the assembler to put the code in the text section of
the object file. The text section is normally where the assembler put the machine
instructions.

+ . globl places the name of the function in the symbol table which makes the
symbol “name” globally visible to the linker and available to any file that is
linked with this assemble file.

+.ent has no effect on the code produced but tells the assembler to mark this point
as the beginning of a function called “name” and to use that information in debug
records.

+name colon labels this point in the assembler’s output with this functions name
and identifies the address that other functions will use in calling this one.

13

Another convent macro is the END macro which you can use at the end of an
assemble function.

+ It looks like this

+ .size Make it easy for the assemble to compute the total number of bytes the
function will use and place the size with the corresponding function name in the
symbol table.

+ .end is used by debuggers to mark the end of the function

14

Up to this point you have seen which registers need to be preserved from one
function to another and where to find the current stack pointer and the return
address.

Now I will turn your attention to argument passing. In order for your assembler
code to be called and to call other functions you need to follow an agreed upon
convention. I have been using the o32 convention in this section to explain the
register layout and I will continue using it to explain the calling convention.

+The calling convention is designed to be compatible with how C functions call
each other.

+ To optimize argument passing the o32 convention uses four general purpose
registers register a0 through a3, to pass arguments to any function. It still allocates
the stack space for these arguments but it does not actually copy the arguments
from the argument registers to those location. The space is allocated in case the
called function will need to save its arguments to the stack.

+ When your assemble code gets called it can find its first arguments in the
argument register and the rest in their expected location on the stack.

+ When your assemble code calls another function it needs to save the arguments it was
called with on its stack to their pre allocated stack location locations. Your function then
needs to place the arguments it is passing to the function it is calling in the argument
registers and any overflow into a new stack frame.

14

15

Let see how this works in practice

+ here I have a simple function call with 3 arguments

+ The first argument will be a pointer to a string and placed into argument register
0.

+ The second argument is also a pointer to a string and placed into argument
register 1.

+ The third argument is a integer and it will go into argument A2

+ This was easy because we only had 3 arguments and they all aligned and fit into
the first 3 argument registers.

+Note the stack pointer will point to the word reserved for the first argument,
Stack pointer + 4 to the second and stack pointer +8 the third argument but no
data will actually be stored in these locations.

16

Now lets see what a more complicated function call would look like

+ Say your assemble code was going to call printf . Printf is a complicated
example because not only are the number of arguments variable but so is the size
of the arguments. This all makes the example more illuminating, so listen closely.

In this example the printf call has four arguments.

+ The first argument is a pointer to the format string.

+ it goes into the a0 argument register. There is also room allocated on the stack
for this argument in case the function being called needs to save it. Note the stack
pointer should be aligned to a double word boundary.

Next is a floating point number of type double which, for MIPS that means, 2
consecutive words aligned on a double word boundary. Since the stack pointer is
aligned to a double word boundary then to align this arguments on the stack
means

+ skipping the next word to get the proper alignment. To keep everything even
you also need to skip the use of the a1 register.

+This all means that the second argument will be placed in argument registers a2

and a3.

+ now we are out of registers to store arguments so the next argument will be copied to the
stack. It is also a double and since we need to allocate space for the first two arguments the
double word will start a the new stack pointer plus 16.

+ The last argument is a integer and will go on the stack a position stack pointer +24.

16

17

Now we are ready to look at a simple assemble function. This function will copy
an input buffer to an output buffer with the assumption that the input and output
buffers are word aligned and the number of bytes to copy is equal to a even
number of words.

+ First I have included two include files:

The regdef.h file allows use to use register names such as a0 instead of register
numbers

And asm.h contains the LEAF and END macros

+ Next I use the .set noreorder directive because I want to control the order of the
code and the use of the branch delay slot.

+ For the start of the function I use the LEAF macro with the name of the function
to start thing off

+ I’ll compute the ending address of the input buffer by adding the length
argument to the address of the buffer argument.

+ next load input data into temporary 0 register

+ then store it to the output buffer

+ and increment the input address

+ test to see if we are at the end of the copy and branch back to the line that is labeled 1 if
we are not

+ while the branch address is being calculated the branch delay slot will execute so I use
the slot to increment the output address

+ when the above branch is false and the input address is equal to the output address the
execution will fall through the branch and I will use the jump register instruction to return
to the calling function.

+ I have nothing for the jump delay slot to do so I put a no opp there

+ then I turn reording back on so any code that follows will be optimized.

+ and last use the END macro to show the end of the function.

17

