
4

The Processor

In a major matter, no details are small.

French Proverb

OUTLINE

4.1 Introduction 256

4.2 Logic Design Conventions 260

4.3 Building a Datapath 263

4.4 A Simple Implementation Scheme 271

 4.5 A Multicycle Implementation 284

4.6 An Overview of Pipelining 285

4.7 Pipelined Datapath and Control 298

4.8 Data Hazards: Forwarding versus Stalling 315

4.9 Control Hazards 328

4.10 Exceptions 337

4.11 Parallelism via Instructions 344

4.12 Putting It All Together: The Intel Core i7 6700 and
ARM Cortex-A53 358

4.13 Going Faster: Instruction-Level Parallelism and
Matrix Multiply 366

 4.14 Advanced Topic: An Introduction to Digital
Design Using a Hardware Design Language to Describe
and Model a Pipeline and More Pipelining
Illustrations 368

4.15 Fallacies and Pitfalls 369

4.16 Concluding Remarks 370

 4.17 Historical Perspective and Further Reading 371

4.18 Self-Study 371

4.19 Exercises 372

Five Classic Components of a Computer

4.1 Introduction
Chapter 1 explains that the performance of a computer is determined by
three key factors: instruction count, clock cycle time, and clock cycles per
instruction (CPI). Chapter 2 explains that the compiler and the instruction
set architecture determine the instruction count required for a given
program. However, the implementation of the processor determines both the
clock cycle time and the number of clock cycles per instruction. In this
chapter, we construct the datapath and control unit for two different
implementations of the MIPS instruction set.

This chapter contains an explanation of the principles and techniques
used in implementing a processor, starting with a highly abstract and
simplified overview in this section. It is followed by a section that builds up
a datapath and constructs a simple version of a processor sufficient to

implement an instruction set like MIPS. The bulk of the chapter covers a
more realistic pipelined MIPS implementation, followed by a section that
develops the concepts necessary to implement more complex instruction
sets, like the x86.

For the reader interested in understanding the high-level interpretation of
instructions and its impact on program performance, this initial section and
Section 4.6 present the basic concepts of pipelining. Recent trends are
covered in Section 4.11, and Section 4.12 describes the recent Intel Core i7
and ARM Cortex-A8 architectures. Section 4.13 shows how to use
instruction-level parallelism to more than double the performance of the
matrix multiply from Section 3.8. These sections provide enough
background to understand the pipeline concepts at a high level.

For the reader interested in understanding the processor and its
performance in more depth, Sections 4.3, 4.4, and 4.7 will be useful. Those
interested in learning how to build a processor should also cover 4.2, 4.8,

4.9, and 4.10. For readers with an interest in modern hardware design,

Section 4.14 describes how hardware design languages and CAD tools
are used to implement hardware, and then how to use a hardware design
language to describe a pipelined implementation. It also gives several more
illustrations of how pipelining hardware executes.

A Basic MIPS Implementation
We will be examining an implementation that includes a subset of the core
MIPS instruction set:

■ The memory-reference instructions load word (lw) and store word
(sw)
■ The arithmetic-logical instructions add, sub, AND, OR, and slt
■ The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example,
shift, multiply, and divide are missing), nor does it include any floating-
point instructions. However, it illustrates the key principles used in creating
a datapath and designing the control. The implementation of the remaining
instructions is similar.

In examining the implementation, we will have the opportunity to see
how the instruction set architecture determines many aspects of the
implementation, and how the choice of various implementation strategies
affects the clock rate and CPI for the computer. Many of the key design
principles introduced in Chapter 1 can be illustrated by looking at the
implementation, such as Simplicity favors regularity. In addition, most
concepts used to implement the MIPS subset in this chapter are the same
basic ideas that are used to construct a broad spectrum of computers, from
high-performance servers to general-purpose microprocessors to embedded
processors.

An Overview of the Implementation
In Chapter 2, we looked at the core MIPS instructions, including the integer
arithmetic-logical instructions, the memory-reference instructions, and the
branch instructions. Much of what needs to be done to implement these

instructions is the same, independent of the exact class of instruction. For
every instruction, the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code
and fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the
registers to read. For the load word instruction, we need to read
only one register, but most other instructions require reading two
registers.

After these two steps, the actions required to complete the instruction
depend on the instruction class. Fortunately, for each of the three instruction
classes (memory-reference, arithmetic-logical, and branches), the actions
are largely the same, independent of the exact instruction. The simplicity
and regularity of the MIPS instruction set simplifies the implementation by
making the execution of many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-
logical unit (ALU) after reading the registers. The memory-reference
instructions use the ALU for an address calculation, the arithmetic-logical
instructions for the operation execution, and branches for comparison. After
using the ALU, the actions required to complete various instruction classes
differ. A memory-reference instruction will need to access the memory
either to read data for a load or write data for a store. An arithmetic-logical
or load instruction must write the data from the ALU or memory back into a
register. Lastly, for a branch instruction, we may need to change the next
instruction address based on the comparison; otherwise, the PC should be
incremented by 4 to get the address of the next instruction.

Figure 4.1 shows the high-level view of a MIPS implementation,
focusing on the various functional units and their interconnection. Although
this figure shows most of the flow of data through the processor, it omits
two important aspects of instruction execution.

FIGURE 4.1 An abstract view of the
implementation of the MIPS subset showing
the major functional units and the major
connections between them.
All instructions start by using the program counter
to supply the instruction address to the instruction
memory. After the instruction is fetched, the
register operands used by an instruction are
specified by fields of that instruction. Once the
register operands have been fetched, they can be
operated on to compute a memory address (for a
load or store), to compute an arithmetic result (for
an integer arithmetic-logical instruction), or a
compare (for a branch). If the instruction is an
arithmetic-logical instruction, the result from the
ALU must be written to a register. If the operation
is a load or store, the ALU result is used as an
address to either load a value from memory into
the registers or store a value from the registers.
The result from the ALU or memory is written
back into the register file. Branches require the
use of the ALU output to determine the next
instruction address, which comes either from the

ALU (where the PC and branch offset are
summed) or from an adder that increments the
current PC by 4. The thick lines interconnecting
the functional units represent buses, which
consist of multiple signals. The arrows are used
to guide the reader in knowing how information
flows. Since signal lines may cross, we explicitly
show when crossing lines are connected by the
presence of a dot where the lines cross.

First, in several places, Figure 4.1 shows data going to a particular unit as
coming from two different sources. For example, the value written into the
PC can come from one of two adders, the data written into the register file
can come from either the ALU or the data memory, and the second input to
the ALU can come from a register or the immediate field of the instruction.
In practice, these data lines cannot simply be wired together; we must add a
logic element that chooses from among the multiple sources and steers one
of those sources to its destination. This selection is commonly done with a
device called a multiplexor, although this device might better be called a
data selector. Appendix B describes the multiplexor, which selects from
among several inputs based on the setting of its control lines. The control
lines are set based primarily on information taken from the instruction being
executed.

The second omission in Figure 4.1 is that several of the units must be
controlled depending on the type of instruction. For example, the data
memory must read on a load and write on a store. The register file must be
written only on a load or on an arithmetic-logical instruction. And, of
course, the ALU must perform one of several operations. (Appendix B
describes the detailed design of the ALU.) Like the multiplexors, control
lines are set on the basis of various fields in the instruction to direct these
operations.

Figure 4.2 shows the datapath of Figure 4.1 with the three required
multiplexors added, as well as control lines for the major functional units. A
control unit, which has the instruction as an input, is used to determine how
to set the control lines for the functional units and two of the multiplexors.
The third multiplexor, which determines whether PC + 4 or the branch

destination address is written into the PC, is set based on the Zero output of
the ALU, which is used to perform the comparison of a beq instruction. The
regularity and simplicity of the MIPS instruction set means that a simple
decoding process can be used to determine how to set the control lines.

FIGURE 4.2 The basic implementation of the
MIPS subset, including the necessary
multiplexors and control lines.
The top multiplexor (“Mux”) controls what value
replaces the PC (PC + 4 or the branch
destination address); the multiplexor is controlled
by the gate that “ANDs” together the Zero output
of the ALU and a control signal that indicates that
the instruction is a branch. The middle
multiplexor, whose output returns to the register
file, is used to steer the output of the ALU (in the
case of an arithmetic-logical instruction) or the
output of the data memory (in the case of a load)
for writing into the register file. Finally, the
bottommost multiplexor is used to determine
whether the second ALU input is from the
registers (for an arithmetic-logical instruction or a
branch) or from the offset field of the instruction
(for a load or store). The added control lines are

straightforward and determine the operation
performed at the ALU, whether the data memory
should read or write, and whether the registers
should perform a write operation. The control
lines are shown in color to make them easier to
see.

In the remainder of the chapter, we refine this view to fill in the details,
which requires that we add further functional units, increase the number of
connections between units, and, of course, enhance a control unit to control
what actions are taken for different instruction classes. Sections 4.3 and 4.4
describe a simple implementation that uses a single long clock cycle for
every instruction and follows the general form of Figures 4.1 and 4.2. In
this first design, every instruction begins execution on one clock edge and
completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock
cycle must be severely stretched to accommodate the longest instruction.
After designing the control for this simple computer, we will look at faster
implementations with all their complexities, including exceptions.

Check Yourself
How many of the five classic components of a computer—shown on
page 255—do Figures 4.1 and 4.2 include?

4.2 Logic Design Conventions
To discuss the design of a computer, we must decide how the hardware
logic implementing the computer will operate and how the computer is
clocked. This section reviews a few key ideas in digital logic that we will
use extensively in this chapter. If you have little or no background in digital

logic, you will find it helpful to read Appendix B before continuing.
The datapath elements in the MIPS implementation consist of two

different types of logic elements: elements that operate on data values and
elements that contain state. The elements that operate on data values are all

combinational, which means that their outputs depend only on the current
inputs. Given the same input, a combinational element always produces the

same output. The ALU in Figure 4.1 and discussed in Appendix B is
an example of a combinational element. Given a set of inputs, it always
produces the same output because it has no internal storage.

combinational element
An operational element, such as an AND gate or an ALU.

Other elements in the design are not combinational, but instead contain
state. An element contains state if it has some internal storage. We call
these elements state elements because, if we pulled the power plug on
the computer, we could restart it accurately by loading the state elements
with the values they contained before we pulled the plug. Furthermore, if
we saved and restored the state elements, it would be as if the computer had
never lost power. Thus, these state elements completely characterize the
computer. In Figure 4.1, the instruction and data memories, as well as the
registers, are all examples of state elements.

state element
A memory element, such as a register or a memory.

A state element has at least two inputs and one output. The required
inputs are the data value to be written into the element and the clock, which
determines when the data value is written. The output from a state element
provides the value that was written in an earlier clock cycle. For example,

one of the logically simplest state elements is a D-type flip-flop (see
Appendix B), which has exactly these two inputs (a value and a clock)
and one output. In addition to flip-flops, our MIPS implementation uses two
other types of state elements: memories and registers, both of which appear
in Figure 4.1. The clock is used to determine when the state element should
be written; a state element can be read at any time.

Logic components that contain state are also called sequential, because
their outputs depend on both their inputs and the contents of the internal
state. For example, the output from the functional unit representing the
registers depends both on the register numbers supplied and on what was
written into the registers previously. The operation of both the
combinational and sequential elements and their construction are discussed

in more detail in Appendix B.

Clocking Methodology
A clocking methodology defines when signals can be read and when
they can be written. It is important to specify the timing of reads and writes,
because if a signal is written at the same time it is read, the value of the read
could correspond to the old value, the newly written value, or even some
mix of the two! Computer designs cannot tolerate such unpredictability. A
clocking methodology is designed to make hardware predictable.

clocking methodology
The approach used to determine when data is valid and stable relative to
the clock.

For simplicity, we will assume an edge-triggered clocking
methodology. An edge-triggered clocking methodology means that any
values stored in a sequential logic element are updated only on a clock
edge, which is a quick transition from low to high or vice versa (see Figure
4.3). Because only state elements can store a data value, any collection of
combinational logic must have its inputs come from a set of state elements
and its outputs written into a set of state elements. The inputs are values that
were written in a previous clock cycle, while the outputs are values that can
be used in a following clock cycle.

edge-triggered clocking
A clocking scheme in which all state changes occur on a clock edge.

FIGURE 4.3 Combinational logic, state
elements, and the clock are closely related.
In a synchronous digital system, the clock
determines when elements with state will write
values into internal storage. Any inputs to a state
element must reach a stable value (that is, have
reached a value from which they will not change
until after the clock edge) before the active clock
edge causes the state to be updated. All state
elements in this chapter, including memory, are
assumed to be positive edge-triggered; that is,
they change on the rising clock edge.

Figure 4.3 shows the two state elements surrounding a block of
combinational logic, which operates in a single clock cycle: all signals must
propagate from state element 1, through the combinational logic, and to
state element 2 in the time of one clock cycle. The time necessary for the
signals to reach state element 2 defines the length of the clock cycle.

For simplicity, we do not show a write control signal when a state
element is written on every active clock edge. In contrast, if a state element
is not updated on every clock, then an explicit write control signal is
required. Both the clock signal and the write control signal are inputs, and
the state element is changed only when the write control signal is asserted
and a clock edge occurs.

control signal
A signal used for multiplexor selection or for directing the operation of a
functional unit; contrasts with a data signal, which contains information
that is operated on by a functional unit.

We will use the word asserted to indicate a signal that is logically high
and assert to specify that a signal should be driven logically high, and
deassert or deasserted to represent logically low. We use the terms assert
and deassert because when we implement hardware, at times 1 represents
logically high and at times it can represent logically low.

asserted
The signal is logically high or true.

deasserted
The signal is logically low or false.

An edge-triggered methodology allows us to read the contents of a
register, send the value through some combinational logic, and write that
register in the same clock cycle. Figure 4.4 gives a generic example. It
doesn’t matter whether we assume that all writes take place on the rising
clock edge (from low to high) or on the falling clock edge (from high to
low), since the inputs to the combinational logic block cannot change
except on the chosen clock edge. In this book we use the rising clock edge.
With an edge-triggered timing methodology, there is no feedback within a

single clock cycle, and the logic in Figure 4.4 works correctly. In
Appendix B, we briefly discuss additional timing constraints (such as
setup and hold times) as well as other timing methodologies.

FIGURE 4.4 An edge-triggered methodology
allows a state element to be read and written
in the same clock cycle without creating a
race that could lead to indeterminate data
values.
Of course, the clock cycle still must be long
enough so that the input values are stable when
the active clock edge occurs. Feedback cannot
occur within one clock cycle because of the edge-
triggered update of the state element. If feedback
were possible, this design could not work
properly. Our designs in this chapter and the next
rely on the edge-triggered timing methodology
and on structures like the one shown in this
figure.

For the 32-bit MIPS architecture, nearly all of these state and logic
elements will have inputs and outputs that are 32 bits wide, since that is the
width of most of the data handled by the processor. We will make it clear
whenever a unit has an input or output that is other than 32 bits in width.
The figures will indicate buses, which are signals wider than 1 bit, with
thicker lines. At times, we will want to combine several buses to form a
wider bus; for example, we may want to obtain a 32-bit bus by combining
two 16-bit buses. In such cases, labels on the bus lines will make it clear
that we are concatenating buses to form a wider bus. Arrows are also added
to help clarify the direction of the flow of data between elements. Finally,
color indicates a control signal as opposed to a signal that carries data; this
distinction will become clearer as we proceed through this chapter.

Check Yourself

True or false: Because the register file is both read and written on the
same clock cycle, any MIPS datapath using edge-triggered writes must
have more than one copy of the register file.

Elaboration
There is also a 64-bit version of the MIPS architecture, and, naturally
enough, most paths in its implementation would be 64 bits wide.

4.3 Building a Datapath
A reasonable way to start a datapath design is to examine the major
components required to execute each class of MIPS instructions. Let’s start
at the top by looking at which datapath elements each instruction needs,
and then work our way down through the levels of abstraction. When we
show the datapath elements, we will also show their control signals. We use
abstraction in this explanation, starting from the bottom up.

datapath element
A unit used to operate on or hold data within a processor. In the MIPS
implementation, the datapath elements include the instruction and data
memories, the register file, the ALU, and adders.

Figure 4.5a shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure
4.5b also shows the program counter (PC), which as we saw in Chapter
2 is a register that holds the address of the current instruction. Lastly, we
will need an adder to increment the PC to the address of the next
instruction. This adder, which is combinational, can be built from the ALU

described in detail in Appendix B simply by wiring the control lines
so that the control always specifies an add operation. We will draw such an
ALU with the label Add, as in Figure 4.5, to indicate that it has been
permanently made an adder and cannot perform the other ALU functions.

program counter (PC)
The register containing the address of the instruction in the program
being executed.

FIGURE 4.5 Two state elements are needed to
store and access instructions, and an adder is
needed to compute the next instruction
address.
The state elements are the instruction memory
and the program counter. The instruction memory
need only provide read access because the
datapath does not write instructions. Since the
instruction memory only reads, we treat it as
combinational logic: the output at any time
reflects the contents of the location specified by
the address input, and no read control signal is
needed. (We will need to write the instruction
memory when we load the program; this is not
hard to add, and we ignore it for simplicity.) The
program counter is a 32-bit register that is written
at the end of every clock cycle and thus does not
need a write control signal. The adder is an ALU
wired to always add its two 32-bit inputs and
place the sum on its output.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also

increment the program counter so that it points at the next instruction, 4
bytes later. Figure 4.6 shows how to combine the three elements from
Figure 4.5 to form the portion of a datapath that fetches instructions and
increments the PC to obtain the address of the next sequential instruction.

FIGURE 4.6 A portion of the datapath used for
fetching instructions and incrementing the
program counter.
The fetched instruction is used by other parts of
the datapath.

Now let’s consider the R-format instructions (see Figure 2.20 on page
126). They all read two registers, perform an ALU operation on the
contents of the registers, and write the result to a register. We call these
instructions either R-type instructions or arithmetic-logical instructions
(since they perform arithmetic or logical operations). This instruction class
includes add, sub, AND, OR, and slt, which were introduced in Chapter 2.

Recall that a typical instance of such an instruction is add $t1,$t2,$t3,
which reads $t2 and $t3 and writes $t1.

The processor’s 32 general-purpose registers are stored in a structure
called a register file. A register file is a collection of registers in which
any register can be read or written by specifying the number of the register
in the file. The register file contains the register state of the computer. In
addition, we will need an ALU to operate on the values read from the
registers.

register fi le
A state element that consists of a set of registers that can be read and
written by supplying a register number to be accessed.

R-format instructions have three register operands, so we will need to
read two data words from the register file and write one data word into the
register file for each instruction. For each data word to be read from the
registers, we need an input to the register file that specifies the register
number to be read and an output from the register file that will carry the
value that has been read from the registers. To write a data word, we will
need two inputs: one to specify the register number to be written and one to
supply the data to be written into the register. The register file always
outputs the contents of whatever register numbers are on the Read register
inputs. Writes, however, are controlled by the write control signal, which
must be asserted for a write to occur at the clock edge. Figure 4.7a shows
the result; we need a total of four inputs (three for register numbers and one
for data) and two outputs (both for data). The register number inputs are 5
bits wide to specify one of 32 registers (32 = 25), whereas the data input and
two data output buses are each 32 bits wide.

FIGURE 4.7 The two elements needed to
implement R-format ALU operations are the
register file and the ALU.
The register file contains all the registers and has
two read ports and one write port. The design of
multiported register files is discussed in Section

B.8 of Appendix B. The register file always
outputs the contents of the registers
corresponding to the Read register inputs on the
outputs; no other control inputs are needed. In
contrast, a register write must be explicitly
indicated by asserting the write control signal.
Remember that writes are edge-triggered, so that
all the write inputs (i.e., the value to be written,
the register number, and the write control signal)
must be valid at the clock edge. Since writes to
the register file are edge-triggered, our design
can legally read and write the same register
within a clock cycle: the read will get the value
written in an earlier clock cycle, while the value
written will be available to a read in a subsequent
clock cycle. The inputs carrying the register
number to the register file are all 5 bits wide,
whereas the lines carrying data values are 32 bits
wide. The operation to be performed by the ALU

is controlled with the ALU operation signal, which
will be 4 bits wide, using the ALU designed in

 Appendix B. We will use the Zero detection
output of the ALU shortly to implement branches.
The overflow output will not be needed until
Section 4.10, when we discuss exceptions; we
omit it until then.

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces
a 32-bit result, as well as a 1-bit signal if the result is 0. The 4-bit control

signal of the ALU is described in detail in Appendix B; we will
review the ALU control shortly when we need to know how to set it.

Next, consider the MIPS load word and store word instructions, which
have the general form lw $t1,offset_value($t2) or sw
$t1,offset_value ($t2). These instructions compute a memory address
by adding the base register, which is $t2, to the 16-bit signed offset field
contained in the instruction. If the instruction is a store, the value to be
stored must also be read from the register file where it resides in $t1. If the
instruction is a load, the value read from memory must be written into the
register file in the specified register, which is $t1. Thus, we will need both
the register file and the ALU from Figure 4.7.

Furthermore, we will need a unit to sign-extend the 16-bit offset field
in the instruction to a 32-bit signed value, and a data memory unit to read
from or write to. The data memory must be written on store instructions;
hence, data memory has read and write control signals, an address input,
and an input for the data to be written into memory. Figure 4.8 shows these
two elements.

sign-extend
To increase the size of a data item by replicating the high-order sign bit
of the original data item in the high-order bits of the larger, destination
data item.

FIGURE 4.8 The two units needed to implement
loads and stores, in addition to the register
file and ALU of Figure 4.7, are the data
memory unit and the sign extension unit.
The memory unit is a state element with inputs
for the address and the write data, and a single
output for the read result. There are separate
read and write controls, although only one of
these may be asserted on any given clock. The
memory unit needs a read signal, since, unlike
the register file, reading the value of an invalid
address can cause problems, as we will see in
Chapter 5. The sign extension unit has a 16-bit
input that is sign-extended into a 32-bit result
appearing on the output (see Chapter 2). We
assume the data memory is edge-triggered for
writes. Standard memory chips actually have a
write enable signal that is used for writes.
Although the write enable is not edge-triggered,
our edge-triggered design could easily be
adapted to work with real memory chips. See

Section B.8 of Appendix B for further
discussion of how real memory chips work.

The beq instruction has three operands, two registers that are compared
for equality, and a 16-bit offset used to compute the branch target
address relative to the branch instruction address. Its form is beq
$t1,$t2,offset. To implement this instruction, we must compute the
branch target address by adding the sign-extended offset field of the
instruction to the PC. There are two details in the definition of branch
instructions (see Chapter 2) to which we must pay attention:

■ The instruction set architecture specifies that the base for the branch
address calculation is the address of the instruction following the
branch. Since we compute PC + 4 (the address of the next instruction)
in the instruction fetch datapath, it is easy to use this value as the base
for computing the branch target address.
■ The architecture also states that the offset field is shifted left 2 bits
so that it is a word offset; this shift increases the effective range of the
offset field by a factor of 4.

branch target address
The address specified in a branch, which becomes the new program
counter (PC) if the branch is taken. In the MIPS architecture the branch
target is given by the sum of the offset field of the instruction and the
address of the instruction following the branch.

To deal with the latter complication, we will need to shift the offset field
by 2.

As well as computing the branch target address, we must also determine
whether the next instruction is the instruction that follows sequentially or
the instruction at the branch target address. When the condition is true (i.e.,
the operands are equal), the branch target address becomes the new PC, and
we say that the branch is taken. If the operands are not equal, the

incremented PC should replace the current PC (just as for any other normal
instruction); in this case, we say that the branch is not taken.

branch taken
A branch where the branch condition is satisfied and the program counter
(PC) becomes the branch target. All unconditional jumps are taken
branches.

branch not taken or (untaken branch)
A branch where the branch condition is false and the program counter
(PC) becomes the address of the instruction that sequentially follows the
branch.

Thus, the branch datapath must do two operations: compute the branch
target address and compare the register contents. (Branches also affect the
instruction fetch portion of the datapath, as we will deal with shortly.)
Figure 4.9 shows the structure of the datapath segment that handles
branches. To compute the branch target address, the branch datapath
includes a sign extension unit, from Figure 4.8 and an adder. To perform the
compare, we need to use the register file shown in Figure 4.7a to supply the
two register operands (although we will not need to write into the register
file). In addition, the comparison can be done using the ALU we designed

in Appendix B. Since that ALU provides an output signal that
indicates whether the result was 0, we can send the two register operands to
the ALU with the control set to do a subtract. If the Zero signal out of the
ALU unit is asserted, we know that the two values are equal. Although the
Zero output always signals if the result is 0, we will be using it only to
implement the equal test of branches. Later, we will show exactly how to
connect the control signals of the ALU for use in the datapath.

FIGURE 4.9 The portion of a datapath for a
branch uses the ALU to evaluate the branch
condition and a separate adder to compute
the branch target as the sum of the
incremented PC and the sign-extended, lower
16 bits of the instruction (the branch
displacement), shifted left 2 bits.
The unit labeled Shift left 2 is simply a routing of
the signals between input and output that adds
00two to the low-order end of the sign-extended
offset field; no actual shift hardware is needed,
since the amount of the “shift” is constant. Since
we know that the offset was sign-extended from
16 bits, the shift will throw away only “sign bits.”
Control logic is used to decide whether the
incremented PC or branch target should replace
the PC, based on the Zero output of the ALU.

The jump instruction operates by replacing the lower 28 bits of the PC
with the lower 26 bits of the instruction shifted left by 2 bits. Simply
concatenating 00 to the jump offset accomplishes this shift, as described in
Chapter 2.

Elaboration
In the MIPS instruction set, branches are delayed, meaning that the
instruction immediately following the branch is always executed,
independent of whether the branch condition is true or false. When the
condition is false, the execution looks like a normal branch. When the
condition is true, a delayed branch first executes the instruction
immediately following the branch in sequential instruction order before
jumping to the specified branch target address. The motivation for
delayed branches arises from how pipelining affects branches (see
Section 4.9). For simplicity, we generally ignore delayed branches in this
chapter and implement a nondelayed beq instruction.

delayed branch
A type of branch where the instruction immediately following the branch
is always executed, independent of whether the branch condition is true
or false.

Creating a Single Datapath
Now that we have examined the datapath components needed for the
individual instruction classes, we can combine them into a single datapath
and add the control to complete the implementation. This simplest datapath
will attempt to execute all instructions in one clock cycle. Thus, no datapath
resource can be used more than once per instruction, so any element needed
more than once must be duplicated. We therefore need a memory for
instructions separate from one for data. Although some of the functional
units will need to be duplicated, many of the elements can be shared by
different instruction flows.

To share a datapath element between two different instruction classes, we
may need to allow multiple connections to the input of an element, using a

multiplexor and control signal to select among the multiple inputs.

Building a Datapath

Example
The operations of arithmetic-logical (or R-type) instructions and the
memory instructions datapath are quite similar. The key differences are
the following:

■ The arithmetic-logical instructions use the ALU, with the inputs
coming from the two registers. The memory instructions can also
use the ALU to do the address calculation, although the second
input is the sign-extended 16-bit offset field from the instruction.
■ The value stored into a destination register comes from the ALU
(for an R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the
memory-reference and arithmetic-logical instructions that uses a single
register file and a single ALU to handle both types of instructions, adding
any necessary multiplexors.

Answer
To create a datapath with only a single register file and a single ALU, we
must support two different sources for the second ALU input, as well as
two different sources for the data stored into the register file. Thus, one
multiplexor is placed at the ALU input and another at the data input to
the register file. Figure 4.10 shows the operational portion of the
combined datapath.

FIGURE 4.10 The datapath for the memory
instructions and the R-type instructions.
This example shows how a single datapath can
be assembled from the pieces in Figures 4.7
and 4.8 by adding multiplexors. Two
multiplexors are needed, as described in the
example.

Now we can combine all the pieces to make a simple datapath for the
core MIPS architecture by adding the datapath for instruction fetch (Figure
4.6), the datapath from R-type and memory instructions (Figure 4.10), and
the datapath for branches (Figure 4.9). Figure 4.11 shows the datapath we
obtain by composing the separate pieces. The branch instruction uses the
main ALU for comparison of the register operands, so we must keep the
adder from Figure 4.9 for computing the branch target address. An
additional multiplexor is required to select either the sequentially following
instruction address (PC + 4) or the branch target address to be written into
the PC.

FIGURE 4.11 The simple datapath for the core
MIPS architecture combines the elements
required by different instruction classes.
The components come from Figures 4.6, 4.9, and
4.10. This datapath can execute the basic
instructions (load-store word, ALU operations,
and branches) in a single clock cycle. Just one
additional multiplexor is needed to integrate
branches. The support for jumps will be added
later.

Now that we have completed this simple datapath, we can add the control
unit. The control unit must be able to take inputs and generate a write signal
for each state element, the selector control for each multiplexor, and the
ALU control. The ALU control is different in a number of ways, and it will
be useful to design it first before we design the rest of the control unit.

Check Yourself

I. Which of the following is correct for a load instruction? Refer to
Figure 4.10.

a. MemtoReg should be set to cause the data from memory to be
sent to the register file.

b. MemtoReg should be set to cause the correct register
destination to be sent to the register file.

c. We do not care about the setting of MemtoReg for loads.
II. The single-cycle datapath conceptually described in this section

must have separate instruction and data memories, because
a. the formats of data and instructions are different in MIPS, and

hence different memories are needed.
b. having separate memories is less expensive.
c. the processor operates in one clock cycle and cannot use a

single-ported memory for two different accesses within that
clock cycle.

4.4 A Simple Implementation Scheme
In this section, we look at what might be thought of as the simplest possible
implementation of our MIPS subset. We build this simple implementation
using the datapath of the last section and adding a simple control function.
This simple implementation covers load word (lw), store word (sw), branch
equal (beq), and the arithmetic-logical instructions add, sub, AND, OR,
and set on less than. We will later enhance the design to include a jump
instruction (j).

The ALU Control

The MIPS ALU in Appendix B defines the 6 following
combinations of four control inputs:

ALU control lines Function
0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

Depending on the instruction class, the ALU will need to perform one of
these first five functions. (NOR is needed for other parts of the MIPS
instruction set not found in the subset we are implementing.) For load word
and store word instructions, we use the ALU to compute the memory
address by addition. For the R-type instructions, the ALU needs to perform
one of the five actions (AND, OR, subtract, add, or set on less than),
depending on the value of the 6-bit funct (or function) field in the low-order
bits of the instruction (see Chapter 2). For branch equal, the ALU must
perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit
that has as inputs the function field of the instruction and a 2-bit control
field, which we call ALUOp. ALUOp indicates whether the operation to be
performed should be add (00) for loads and stores, subtract (01) for beq, or
determined by the operation encoded in the funct field (10). The output of
the ALU control unit is a 4-bit signal that directly controls the ALU by
generating one of the 4-bit combinations shown previously.

In Figure 4.12, we show how to set the ALU control inputs based on the
2-bit ALUOp control and the 6-bit function code. Later in this chapter we
will see how the ALUOp bits are generated from the main control unit.

FIGURE 4.12 How the ALU control bits are set
depends on the ALUOp control bits and the
different function codes for the R-type
instruction.
The opcode, listed in the first column, determines
the setting of the ALUOp bits. All the encodings
are shown in binary. Notice that when the ALUOp
code is 00 or 01, the desired ALU action does not
depend on the function code field; in this case,
we say that we “don’t care” about the value of the
function code, and the funct field is shown as
XXXXXX. When the ALUOp value is 10, then the
function code is used to set the ALU control input.

See Appendix B.

This style of using multiple levels of decoding—that is, the main control
unit generates the ALUOp bits, which then are used as input to the ALU
control that generates the actual signals to control the ALU unit—is a
common implementation technique. Using multiple levels of control can
reduce the size of the main control unit. Using several smaller control units
may also potentially increase the speed of the control unit. Such
optimizations are important, since the speed of the control unit is often
critical to clock cycle time.

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit funct field to the four ALU operation control
bits. Because only a small number of the 64 possible values of the function
field are of interest and the function field is used only when the ALUOp

bits equal 10, we can use a small piece of logic that recognizes the subset of
possible values and causes the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the
interesting combinations of the function code field and the ALUOp bits, as
we’ve done in Figure 4.13; this truth table shows how the 4-bit ALU
control is set depending on these two input fields. Since the full truth table
is very large (28 = 256 entries) and we don’t care about the value of the
ALU control for many of these input combinations, we show only the truth
table entries for which the ALU control must have a specific value.
Throughout this chapter, we will use this practice of showing only the truth
table entries for outputs that must be asserted and not showing those that are
all deasserted or don’t care. (This practice has a disadvantage, which we

discuss in Section D.2 of Appendix D.)

truth table
From logic, a representation of a logical operation by listing all the
values of the inputs and then in each case showing what the resulting
outputs should be.

FIGURE 4.13 The truth table for the 4 ALU
control bits (called Operation).
The inputs are the ALUOp and function code
field. Only the entries for which the ALU control is
asserted are shown. Some don’t-care entries
have been added. For example, the ALUOp does
not use the encoding 11, so the truth table can
contain entries 1X and X1, rather than 10 and 01.
Note that when the function field is used, the first
2 bits (F5 and F4) of these instructions are
always 10, so they are don’t-care terms and are
replaced with XX in the truth table.

Because in many instances we do not care about the values of some of
the inputs, and because we wish to keep the tables compact, we also include
don’t-care terms. A don’t-care term in this truth table (represented by an
X in an input column) indicates that the output does not depend on the
value of the input corresponding to that column. For example, when the
ALUOp bits are 00, as in the first row of Figure 4.13, we always set the
ALU control to 0010, independent of the function code. In this case, then,
the function code inputs will be don’t cares in this line of the truth table.
Later, we will see examples of another type of don’t-care term. If you are

unfamiliar with the concept of don’t-care terms, see Appendix B for
more information.

don’t-care term

An element of a logical function in which the output does not depend on
the values of all the inputs. Don’t-care terms may be specified in
different ways.

Once the truth table has been constructed, it can be optimized and then
turned into gates. This process is completely mechanical. Thus, rather than
show the final steps here, we describe the process and the result in Section

D.2 of Appendix D.

Designing the Main Control Unit
Now that we have described how to design an ALU that uses the function
code and a 2-bit signal as its control inputs, we can return to looking at the
rest of the control. To start this process, let’s identify the fields of an
instruction and the control lines that are needed for the datapath we
constructed in Figure 4.11. To understand how to connect the fields of an
instruction to the datapath, it is useful to review the formats of the three
instruction classes: the R-type, branch, and load-store instructions. Figure
4.14 shows these formats.

FIGURE 4.14 The three instruction classes (R-
type, load and store, and branch) use two
different instruction formats.
The jump instructions use another format, which
we will discuss shortly. (a) Instruction format for
R-format instructions, which all have an opcode
of 0. These instructions have three register
operands: rs, rt, and rd. Fields rs and rt are
sources, and rd is the destination. The ALU
function is in the funct field and is decoded by the
ALU control design in the previous section. The
R-type instructions that we implement are add,
sub, AND, OR, and slt. The shamt field is used only
for shifts; we will ignore it in this chapter. (b)
Instruction format for load (opcode = 35ten) and
store (opcode = 43ten) instructions. The register rs
is the base register that is added to the 16-bit
address field to form the memory address. For
loads, rt is the destination register for the loaded
value. For stores, rt is the source register whose
value should be stored into memory. (c)
Instruction format for branch equal (opcode = 4).
The registers rs and rt are the source registers
that are compared for equality. The 16-bit
address field is sign-extended, shifted, and added
to the PC + 4 to compute the branch target
address.

There are several major observations about this instruction format that
we will rely on:

■ The op field, which as we saw in Chapter 2 is called the opcode, is
always contained in bits 31:26. We will refer to this field as Op[5:0].
■ The two registers to be read are always specified by the rs and rt
fields, at positions 25:21 and 20:16. This is true for the R-type
instructions, branch equal, and store.
■ The base register for load and store instructions is always in bit
positions 25:21 (rs).
■ The 16-bit offset for branch equal, load, and store is always in
positions 15:0.
■ The destination register is in one of two places. For a load it is in bit
positions 20:16 (rt), while for an R-type instruction it is in bit
positions 15:11 (rd). Thus, we will need to add a multiplexor to select
which field of the instruction is used to indicate the register number to
be written.

opcode
The field that denotes the operation and format of an instruction.

The first design principle from Chapter 2—simplicity favors regularity—
pays off here in specifying control.

Using this information, we can add the instruction labels and extra
multiplexor (for the Write register number input of the register file) to the
simple datapath. Figure 4.15 shows these additions plus the ALU control
block, the write signals for state elements, the read signal for the data
memory, and the control signals for the multiplexors. Since all the
multiplexors have two inputs, they each require a single control line.

FIGURE 4.15 The datapath of Figure 4.11 with all
necessary multiplexors and all control lines
identified.
The control lines are shown in color. The ALU
control block has also been added. The PC does
not require a write control, since it is written once
at the end of every clock cycle; the branch control
logic determines whether it is written with the
incremented PC or the branch target address.

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp
control signal. We have already defined how the ALUOp control signal
works, and it is useful to define what the seven other control signals do
informally before we determine how to set these control signals during
instruction execution. Figure 4.16 describes the function of these seven
control lines.

FIGURE 4.16 The effect of each of the seven
control signals.
When the 1-bit control to a two-way multiplexor is
asserted, the multiplexor selects the input
corresponding to 1. Otherwise, if the control is
deasserted, the multiplexor selects the 0 input.
Remember that the state elements all have the
clock as an implicit input and that the clock is
used in controlling writes. Gating the clock
externally to a state element can create timing

problems. (See Appendix B for further
discussion of this problem.)

Now that we have looked at the function of each of the control signals,
we can look at how to set them. The control unit can set all but one of the
control signals based solely on the opcode field of the instruction. The
PCSrc control line is the exception. That control line should be asserted if
the instruction is branch on equal (a decision that the control unit can make)
and the Zero output of the ALU, which is used for equality comparison, is
asserted. To generate the PCSrc signal, we will need to AND together a
signal from the control unit, which we call Branch, with the Zero signal out
of the ALU.

These nine control signals (seven from Figure 4.16 and two for ALUOp)
can now be set on the basis of six input signals to the control unit, which are
the opcode bits 31 to 26. Figure 4.17 shows the datapath with the control
unit and the control signals.

FIGURE 4.17 The simple datapath with the
control unit.
The input to the control unit is the 6-bit opcode
field from the instruction. The outputs of the
control unit consist of three 1-bit signals that are
used to control multiplexors (RegDst, ALUSrc,
and MemtoReg), three signals for controlling
reads and writes in the register file and data
memory (RegWrite, MemRead, and MemWrite), a
1-bit signal used in determining whether to
possibly branch (Branch), and a 2-bit control
signal for the ALU (ALUOp). An AND gate is used
to combine the branch control signal and the Zero
output from the ALU; the AND gate output
controls the selection of the next PC. Notice that
PCSrc is now a derived signal, rather than one
coming directly from the control unit. Thus, we
drop the signal name in subsequent figures.

Before we try to write a set of equations or a truth table for the control
unit, it will be useful to try to define the control function informally.
Because the setting of the control lines depends only on the opcode, we
define whether each control signal should be 0, 1, or don’t care (X) for each
of the opcode values. Figure 4.18 defines how the control signals should be
set for each opcode; this information follows directly from Figures 4.12,
4.16, and 4.17.

FIGURE 4.18 The setting of the control lines is
completely determined by the opcode fields
of the instruction.
The first row of the table corresponds to the R-
format instructions (add, sub, AND, OR, and slt).
For all these instructions, the source register
fields are rs and rt, and the destination register
field is rd; this defines how the signals ALUSrc
and RegDst are set. Furthermore, an R-type
instruction writes a register (Reg-Write = 1), but
neither reads nor writes data memory. When the
Branch control signal is 0, the PC is
unconditionally replaced with PC + 4; otherwise,
the PC is replaced by the branch target if the
Zero output of the ALU is also high. The ALUOp
field for R-type instructions is set to 10 to indicate
that the ALU control should be generated from
the funct field. The second and third rows of this
table give the control signal settings for lw and sw.
These ALUSrc and ALUOp fields are set to
perform the address calculation. The MemRead
and MemWrite are set to perform the memory
access. Finally, RegDst and RegWrite are set for
a load to cause the result to be stored into the rt
register. The branch instruction is similar to an R-
format operation, since it sends the rs and rt
registers to the ALU. The ALUOp field for branch
is set for a subtract (ALU control = 01), which is
used to test for equality. Notice that the
MemtoReg field is irrelevant when the RegWrite
signal is 0: since the register is not being written,

the value of the data on the register data write
port is not used. Thus, the entry MemtoReg in the
last two rows of the table is replaced with X for
don’t care. Don’t cares can also be added to
RegDst when RegWrite is 0. This type of don’t
care must be added by the designer, since it
depends on knowledge of how the datapath
works.

Operation of the Datapath
With the information contained in Figures 4.16 and 4.18, we can design the
control unit logic, but before we do that, let’s look at how each instruction
uses the datapath. In the next few figures, we show the flow of three
different instruction classes through the datapath. The asserted control
signals and active datapath elements are highlighted in each of these. Note
that a multiplexor whose control is 0 has a definite action, even if its control
line is not highlighted. Multiple-bit control signals are highlighted if any
constituent signal is asserted.

Figure 4.19 shows the operation of the datapath for an R-type instruction,
such as add $t1,$t2,$t3. Although everything occurs in one clock cycle,
we can think of four steps to execute the instruction; these steps are ordered
by the flow of information:

1. The instruction is fetched, and the PC is incremented.
2. Two registers, $t2 and $t3, are read from the register file; also, the

main control unit computes the setting of the control lines during
this step.

3. The ALU operates on the data read from the register file, using the
function code (bits 5:0, which is the funct field, of the instruction)
to generate the ALU function.

4. The result from the ALU is written into the register file using bits
15:11 of the instruction to select the destination register ($t1).

FIGURE 4.19 The datapath in operation for an R-
type instruction, such as add $t1,$t2,$t3.
The control lines, datapath units, and connections
that are active are highlighted.

Similarly, we can illustrate the execution of a load word, such as
lw $t1, offset($t2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional
units and asserted control lines for a load. We can think of a load instruction
as operating in five steps (similar to how the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. A register ($t2) value is read from the register file.
3. The ALU computes the sum of the value read from the register file

and the sign-extended, lower 16 bits of the instruction (offset).
4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the
register destination is given by bits 20:16 of the instruction ($t1).

FIGURE 4.20 The datapath in operation for a
load instruction.
The control lines, datapath units, and connections
that are active are highlighted. A store instruction
would operate very similarly. The main difference
would be that the memory control would indicate
a write rather than a read, the second register
value read would be used for the data to store,
and the operation of writing the data memory
value to the register file would not occur.

Finally, we can show the operation of the branch-on-equal instruction,
such as beq $t1, $t2, offset, in the same fashion. It operates much like
an R-format instruction, but the ALU output is used to determine whether

the PC is written with PC + 4 or the branch target address. Figure 4.21
shows the four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. Two registers, $t1 and $t2, are read from the register file.
3. The ALU performs a subtract on the data values read from the

register file. The value of PC + 4 is added to the sign-extended,
lower 16 bits of the instruction (offset) shifted left by two; the
result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result to
store into the PC.

FIGURE 4.21 The datapath in operation for a
branch-on-equal instruction.
The control lines, datapath units, and connections
that are active are highlighted. After using the
register file and ALU to perform the compare, the
Zero output is used to select the next program
counter from between the two candidates.

Finalizing Control
Now that we have seen how the instructions operate in steps, let’s continue
with the control implementation. The control function can be precisely
defined using the contents of Figure 4.18. The outputs are the control lines,
and the input is the 6-bit opcode field, Op [5:0]. Thus, we can create a truth
table for each of the outputs based on the binary encoding of the opcodes.

Figure 4.22 shows the logic in the control unit as one large truth table
that combines all the outputs and that uses the opcode bits as inputs. It
completely specifies the control function, and we can implement it directly

in gates in an automated fashion. We show this final step in Section D.2 in

 Appendix D.

FIGURE 4.22 The control function for the simple
single-cycle implementation is completely
specified by this truth table.
The top six rows of the table gives the
combinations of input signals that correspond to
the four opcodes, one per column, that determine
the control output settings. (Remember that
Op[5:0] corresponds to bits 31:26 of the
instruction, which is the op field.) The bottom
portion of the table gives the outputs for each of
the four opcodes. Thus, the output RegWrite is
asserted for two different combinations of the
inputs. If we consider only the four opcodes
shown in this table, then we can simplify the truth
table by using don’t cares in the input portion. For
example, we can detect an R-format instruction
with the expression , since this is
sufficient to distinguish the R-format instructions
from lw, sw, and beq. We do not take advantage of
this simplification, since the rest of the MIPS
opcodes are used in a full implementation.

Now that we have a single-cycle implementation of most of the
MIPS core instruction set, let’s add the jump instruction to show how the
basic datapath and control can be extended to handle other instructions in
the instruction set.

single-cycle implementation
Also called single clock cycle implementation. An implementation
in which all instructions are executed in one clock cycle. While easy to
understand, it is too slow to be practical.

Implementing Jumps

Example
Figure 4.17 shows the implementation of many of the instructions we
looked at in Chapter 2. One class of instructions missing is that of the
jump instruction. Extend the datapath and control of Figure 4.17 to
include the jump instruction. Describe how to set any new control lines.

Answer
The jump instruction, shown in Figure 4.23, looks somewhat like a
branch instruction but computes the target PC differently and is not
conditional. Like a branch, the low-order 2 bits of a jump address are
always 00two. The next lower 26 bits of this 32-bit address come from the
26-bit immediate field in the instruction. The upper 4 bits of the address
that should replace the PC come from the PC of the jump instruction plus
4. Thus, we can implement a jump by storing into the PC the
concatenation of

■ the upper 4 bits of the current PC + 4 (these are bits 31:28 of the
sequentially following instruction address)
■ the 26-bit immediate field of the jump instruction
■ the bits 00two

FIGURE 4.23 Instruction format for the jump
instruction (opcode = 2).
The destination address for a jump instruction is
formed by concatenating the upper 4 bits of the
current PC + 4 to the 26-bit address field in the
jump instruction and adding 00 as the 2 low-
order bits.

Figure 4.24 shows the addition of the control for jump added to Figure
4.17. An additional multiplexor is used to select the source for the new
PC value, which is either the incremented PC (PC + 4), the branch target
PC, or the jump target PC. One additional control signal is needed for the
additional multiplexor. This control signal, called Jump, is asserted only
when the instruction is a jump—that is, when the opcode is 2.

FIGURE 4.24 The simple control and datapath
are extended to handle the jump instruction.
An additional multiplexor (at the upper right) is
used to choose between the jump target and
either the branch target or the sequential
instruction following this one. This multiplexor is
controlled by the jump control signal. The jump
target address is obtained by shifting the lower
26 bits of the jump instruction left 2 bits,
effectively adding 00 as the low-order bits, and
then concatenating the upper 4 bits of PC + 4
as the high-order bits, thus yielding a 32-bit
address.

Why a Single-Cycle Implementation Is Not
Used Today

Although the single-cycle design will work correctly, it would not be used
in modern designs because it is inefficient. To see why this is so, notice that
the clock cycle must have the same length for every instruction in this
single-cycle design. Of course, the longest possible path in the processor
determines the clock cycle. This path is almost certainly a load instruction,
which uses five functional units in series: the instruction memory, the
register file, the ALU, the data memory, and the register file. Although the
CPI is 1 (see Chapter 1), the overall performance of a single-cycle
implementation is likely to be poor, since the clock cycle is too long.

The penalty for using the single-cycle design with a fixed clock cycle is
significant, but might be considered acceptable for this small instruction set.
Historically, early computers with very simple instruction sets did use this
implementation technique. However, if we tried to implement the floating-
point unit or an instruction set with more complex instructions, this single-
cycle design wouldn’t work well at all.

Because we must assume that the clock cycle is equal to the worst-case
delay for all instructions, it’s useless to try implementation techniques that
reduce the delay of the common case but do not improve the worst-case
cycle time. A single-cycle implementation thus violates the great idea from
Chapter 1 of making the common case fast.

In section 4.6, we’ll look at another implementation technique, called
pipelining, that uses a datapath very similar to the single-cycle datapath but

is much more efficient by having a much higher throughput. Pipelining
improves efficiency by executing multiple instructions simultaneously.

Check Yourself
Look at the control signals in Figure 4.22. Can you combine any
together? Can any control signal output in the figure be replaced by the
inverse of another? (Hint: take into account the don’t cares.) If so, can
you use one signal for the other without adding an inverter?

 A Multicycle Implementation
In the prior section, we broke each instruction into a series of steps
corresponding to the functional unit operations that were needed. We can
use these steps to create a multicycle implementation. In a multicycle
implementation, each step in the execution will take 1 clock cycle. The
multicycle implementation allows a functional unit to be used more than
once per instruction, as long as it is used on different clock cycles. This
sharing can help reduce the amount of hardware required. The ability to
allow instructions to take different numbers of clock cycles and the ability
to share functional units within the execution of a single instruction are the
major advantages of a multicycle design. This online section describes the
multicycle implementation of MIPS.

Although it could reduce hardware costs, almost all chips today use
pipelining instead to increase performance over a single cycle
implementation, so some readers may want to skip multicycle and go
directly to pipelining. However, some instructors see pedagogic advantages
to explaining multicycle implementation before pipelining, so we offer this
implementation option online.

4.5 A Multicycle Implementation
In an earlier example, we broke each instruction into a series of steps
corresponding to the functional unit operations that were needed. We can
use these steps to create a multicycle implementation. In a multicycle
implementation, each step in the execution will take 1 clock cycle. The
multicycle implementation allows a functional unit to be used more than
once per instruction, as long as it is used on different clock cycles. This
sharing can help reduce the amount of hardware required. The ability to
allow instructions to take different numbers of clock cycles and the ability
to share functional units within the execution of a single instruction are the
major advantages of a multicycle design. Figure e4.5.1 shows the abstract
version of the multicycle datapath. If we compare Figure e4.5.1 to the
datapath for the single-cycle version in Figure 4.15, we can see the
following differences:

• A single memory unit is used for both instructions and data.
• There is a single ALU, rather than an ALU and two adders.
• One or more registers are added after every major functional unit to

hold the output of that unit until the value is used in a subsequent
clock cycle.

multicycle implementation

Also called multiple clock cycle implementation. An implementation in
which an instruction is executed in multiple clock cycles.

FIGURE E4.5.1 The high-level view of the
multicycle datapath.
This picture shows the key elements of the
datapath: a shared memory unit, a single ALU
shared among instructions, and the connections
among these shared units. The use of shared
functional units requires the addition or widening
of multiplexors as well as new temporary
registers that hold data between clock cycles of
the same instruction. The additional registers are
the Instruction register (IR), the Memory data
register (MDR), A, B, and ALUOut.

At the end of a clock cycle, all data that is used in subsequent clock
cycles must be stored in a state element. Data used by subsequent
instructions in a later clock cycle is stored into one of the programmer-
visible state elements: the register file, the PC, or the memory. In contrast,
data used by the same instruction in a later cycle must be stored into one of
these additional registers.

Thus, the position of the additional registers is determined by these two
factors: what combinational units will fit in one clock cycle and what data is
needed in later cycles implementing the instruction. In this multicycle
design, we assume that the clock cycle can accommodate at most one of the
following operations: a memory access, a register file access (two reads or
one write), or an ALU operation. Hence, any data produced by one of these
three functional units (the memory, the register file, or the ALU) must be

saved into a temporary register for use on a later cycle. If it were not saved,
then the possibility of a timing race could occur, leading to the use of an
incorrect value.

The following temporary registers are added to meet these requirements:

• The Instruction register (IR) and the Memory data register (MDR)
are added to save the output of the memory for an instruction read
and a data read, respectively. Two separate registers are used,
since, as will be clear shortly, both values are needed during the
same clock cycle.

• The A and B registers are used to hold the register operand values
read from the register file.

• The ALUOut register holds the output of the ALU.

All the registers except the IR hold data only between a pair of adjacent
clock cycles and will thus not need a write control signal. The IR needs to
hold the instruction until the end of execution of that instruction, and thus
will require a write control signal. This distinction will become more clear
when we show the individual clock cycles for each instruction.

Because several functional units are shared for different purposes, we
need both to add multiplexors and to expand existing multiplexors. For
example, since one memory is used for both instructions and data, we need
a multiplexor to select between the two sources for a memory address,
namely, the PC (for instruction access) and ALUOut (for data access).

Replacing the three ALUs of the single-cycle datapath by a single ALU
means that the single ALU must accommodate all the inputs that used to go
to the three different ALUs. Handling the additional inputs requires two
changes to the datapath:

1. An additional multiplexor is added for the first ALU input. The
multiplexor chooses between the A register and the PC.

2. The multiplexor on the second ALU input is changed from a two-
way to a four-way multiplexor. The two additional inputs to the
multiplexor are the constant 4 (used to increment the PC) and the
sign-extended and shifted offset field (used in the branch address
computation).

Figure e4.5.2 shows the details of the datapath with these additional
multiplexors. By introducing a few registers and multiplexors, we are able
to reduce the number of memory units from two to one and eliminate two
adders. Since registers and multiplexors are fairly small compared to a
memory unit or ALU, this could yield a substantial reduction in the
hardware cost.

FIGURE E4.5.2 Multicycle datapath for MIPS
handles the basic instructions.
Although this datapath supports normal
incrementing of the PC, a few more connections
and a multiplexor will be needed for branches
and jumps; we will add these shortly. The
additions versus the single-clock datapath include
several registers (IR, MDR, A, B, ALUOut), a
multiplexor for the memory address, a multiplexor
for the top ALU input, and expanding the
multiplexor on the bottom ALU input into a four-
way selector. These small additions allow us to
remove two adders and a memory unit.

Because the datapath shown in Figure e4.5.2 takes multiple clock cycles
per instruction, it will require a different set of control signals. The
programmer-visible state units (the PC, the memory, and the registers) as

well as the IR will need write control signals. The memory will also need a
read signal. We can use the ALU control unit from the single-cycle datapath
(see Figure 4.13 and Appendix D) to control the ALU here as well. Finally,
each of the two-input multiplexors requires a single control line, while the
four-input multiplexor requires two control lines. Figure e4.5.3 shows the
datapath of Figure e4.5.2 with these control lines added.

FIGURE E4.5.3 The multicycle datapath from
Figure e4.5.2 with the control lines shown.
The signals ALUOp and ALUSrcB are 2-bit
control signals, while all the other control lines
are 1-bit signals. Neither register A nor B requires
a write signal, since their contents are only read
on the cycle immediately after it is written. The
memory data register has been added to hold the
data from a load when the data returns from
memory. Data from a load returning from memory
cannot be written directly into the register file
since the clock cycle cannot accommodate the
time required for both the memory access and
the register file write. The MemRead signal has
been moved to the top of the memory unit to
simplify the figures. The full set of datapaths and
control lines for branches will be added shortly.

The multicycle datapath still requires additions to support branches and
jumps; after these additions, we will see how the instructions are sequenced
and then generate the datapath control.

With the jump instruction and branch instruction, there are three possible
sources for the value to be written into the PC:

1. The output of the ALU, which is the value PC + 4 during instruction
fetch. This value should be stored directly into the PC.

2. The register ALUOut, which is where we will store the address of
the branch target after it is computed.

3. The lower 26 bits of the Instruction register (IR) shifted left by two
and concatenated with the upper 4 bits of the incremented PC,
which is the source when the instruction is a jump.

As we observed when we implemented the single-cycle control, the PC is
written both unconditionally and conditionally. During a normal increment
and for jumps, the PC is written unconditionally. If the instruction is a
conditional branch, the incremented PC is replaced with the value in
ALUOut only if the two designated registers are equal. Hence, our
implementation uses two separate control signals: PCWrite, which causes
an unconditional write of the PC, and PCWriteCond, which causes a write
of the PC if the branch condition is also true.

We need to connect these two control signals to the PC write control. Just
as we did in the single-cycle datapath, we will use a few gates to derive the
PC write control signal from PCWrite, PCWriteCond, and the Zero signal
of the ALU, which is used to detect if the two register operands of a beq are
equal. To determine whether the PC should be written during a conditional
branch, we AND together the Zero signal of the ALU with the
PCWriteCond. The output of this AND gate is then ORed with PCWrite,
which is the unconditional PC write signal. The output of this OR gate is
connected to the write control signal for the PC.

Figure e4.5.4 shows the complete multicycle datapath and control unit,
including the additional control signals and multiplexor for implementing
the PC updating.

FIGURE E4.5.4 The complete datapath for the
multicycle implementation together with the
necessary control lines.
The control lines of Figure e4.5.3 are attached to
the control unit, and the control and datapath
elements needed to effect changes to the PC are
included. The major additions from Figure e4.5.3
include the multiplexor used to select the source
of a new PC value; gates used to combine the
PC write signals; and the control signals
PCSource, PCWrite, and PCWriteCond. The
PCWriteCond signal is used to decide whether a
conditional branch should be taken. Support for
jumps is included.

Before examining the steps to execute each instruction, let us informally
examine the effect of all the control signals (just as we did for the single-
cycle design in Figure 4.16 on page 264). Figure e4.5.5 shows what each
control signal does when asserted and deasserted.

Elaboration
To reduce the number of signal lines interconnecting the functional units,
designers can use shared buses. A shared bus is a set of lines that connect
multiple units; in most cases, they include multiple sources that can place
data on the bus and multiple readers of the value. Just as we reduced the
number of functional units for the datapath, we can reduce the number of
buses interconnecting these units by sharing the buses. For example,
there are six sources coming to the ALU; however, only two of them are
needed at any one time. Thus, a pair of buses can be used to hold values
that are being sent to the ALU. Rather than placing a large multiplexor in
front of the ALU, a designer can use a shared bus and then ensure that
only one of the sources is driving the bus at any point. Although this
saves signal lines, the same number of control lines will be needed to
control what goes on the bus. The major drawback to using such bus
structures is a potential performance penalty, since a bus is unlikely to be
as fast as a point-to-point connection.

FIGURE E4.5.5 The action caused by the setting
of each control signal in Figure e4.5.4.
The top table describes the 1-bit control signals,
while the bottom table describes the 2-bit signals.
Only those control lines that affect multiplexors
have an action when they are deasserted. This
information is similar to that in Figure 4.16 on
page 264 for the single-cycle datapath, but adds
several new control lines (IRWrite, PCWrite,
PCWriteCond, ALUSrcB, and PCSource) and
removes control lines that are no longer used or
have been replaced (PCSrc, Branch, and Jump).

Breaking the Instruction Execution into
Clock Cycles

Given the datapath in Figure e4.5.4, we now need to look at what should
happen in each clock cycle of the multicycle execution, since this will
determine what additional control signals may be needed, as well as the
setting of the control signals. Our goal in breaking the execution into clock
cycles should be to maximize performance. We can begin by breaking the
execution of any instruction into a series of steps, each taking one clock
cycle, attempting to keep the amount of work per cycle roughly equal. For
example, we will restrict each step to contain at most one ALU operation,
or one register file access, or one memory access. With this restriction, the
clock cycle could be as short as the longest of these operations.

Recall that at the end of every clock cycle any data values that will be
needed on a subsequent cycle must be stored into a register, which can be
either one of the major state elements (e.g., the PC, the register file, or the
memory), a temporary register written on every clock cycle (e.g., A, B,
MDR, or ALUOut), or a temporary register with write control (e.g., IR).
Also remember that because our design is edge-triggered, we can continue
to read the current value of a register; the new value does not appear until
the next clock cycle.

In the single-cycle datapath, each instruction uses a set of datapath
elements to carry out its execution. Many of the datapath elements operate
in series, using the output of another element as an input. Some datapath
elements operate in parallel; for example, the PC is incremented and the
instruction is read at the same time. A similar situation exists in the
multicycle datapath. All the operations listed in one step occur in parallel
within 1 clock cycle, while successive steps operate in series in different
clock cycles. The limitation of one ALU operation, one memory access, and
one register file access determines what can fit in one step.

Notice that we distinguish between reading from or writing into the PC
or one of the stand-alone registers and reading from or writing into the
register file. In the former case, the read or write is part of a clock cycle,
while reading or writing a result into the register file takes an additional
clock cycle. The reason for this distinction is that the register file has
additional control and access overhead compared to the single stand-alone
registers. Thus, keeping the clock cycle short motivates dedicating separate
clock cycles for register file accesses.

The potential execution steps and their actions are given below. Each
MIPS instruction needs from three to five of these steps:

1 Instruction fetch step
Fetch the instruction from memory and compute the address of the next
sequential instruction:

IR <= Memory[PC];
PC <= PC + 4;

Operation: Send the PC to the memory as the address, perform a read,
and write the instruction into the Instruction register (IR), where it will be
stored. Also, increment the PC by 4. We use the symbol “<=” from Verilog;
it indicates that all right-hand sides are evaluated and then all assignments
are made, which is effectively how the hardware executes during the clock
cycle.

To implement this step, we will need to assert the control signals
MemRead and IRWrite, and set IorD to 0 to select the PC as the source of
the address. We also increment the PC by 4, which requires setting the
ALUSrcA signal to 0 (sending the PC to the ALU), the ALUSrcB signal to
01 (sending 4 to the ALU), and ALUOp to 00 (to make the ALU add).
Finally, we will also want to store the incremented instruction address back
into the PC, which requires setting PC source to 00 and setting PCWrite.
The increment of the PC and the instruction memory access can occur in
parallel. The new value of the PC is not visible until the next clock cycle.
(The incremented PC will also be stored into ALUOut, but this action is
benign.)

2 Instruction decode and register fetch step
In the previous step and in this one, we do not yet know what the
instruction is, so we can perform only actions that are either applicable to
all instructions (such as fetching the instruction in step 1) or not harmful, in
case the instruction isn’t what we think it might be. Thus, in this step we
can read the two registers indicated by the rs and rt instruction fields, since
it isn’t harmful to read them even if it isn’t necessary. The values read from

the register file may be needed in later stages, so we read them from the
register file and store the values into the temporary registers A and B.

We will also compute the branch target address with the ALU, which also
is not harmful because we can ignore the value if the instruction turns out
not to be a branch. The potential branch target is saved in ALUOut.

Performing these “optimistic” actions early has the benefit of decreasing
the number of clock cycles needed to execute an instruction. We can do
these optimistic actions early because of the regularity of the instruction
formats. For instance, if the instruction has two register inputs, they are
always in the rs and rt fields, and if the instruction is a branch, the offset is
always the low-order 16 bits:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend (IR[15-0]) << 2);

Operation: Access the register file to read registers rs and rt and store the
results into registers A and B. Since A and B are overwritten on every
cycle, the register file can be read on every cycle with the values stored into
A and B. This step also computes the branch target address and stores the
address in ALUOut, where it will be used on the next clock cycle if the
instruction is a branch. This requires setting ALUSrcA to 0 (so that the PC
is sent to the ALU), ALUSrcB to the value 11 (so that the sign-extended
and shifted offset field is sent to the ALU), and ALUOp to 00 (so the ALU
adds). The register file accesses and computation of branch target occur in
parallel.

After this clock cycle, determining the action to take can depend on the
instruction contents.

3 Execution, memory address computation, or branch
completion
This is the first cycle during which the datapath operation is determined by
the instruction class. In all cases, the ALU is operating on the operands
prepared in the previous step, performing one of four functions, depending
on the instruction class. We specify the action to be taken depending on the
instruction class.

Memory reference:

ALUOut <= A + sign-extend (IR[15:0]);

Operation: The ALU is adding the operands to form the memory address.
This requires setting ALUSrcA to 1 (so that the first ALU input is register
A) and setting ALUSrcB to 10 (so that the output of the sign extension unit
is used for the second ALU input). The ALUOp signals will need to be set
to 00 (causing the ALU to add).

Arithmetic-logical instruction (R-type):

ALUOut <= A op B;

Operation: The ALU is performing the operation specified by the
function code on the two values read from the register file in the previous
cycle. This requires setting ALUSrcA=1 and setting ALUSrcB=00, which
together cause the registers A and B to be used as the ALU inputs. The
ALUOp signals will need to be set to 10 (so that the funct field is used to
determine the ALU control signal settings).

Branch:

if (A = = B) PC <= ALUOut;

Operation: The ALU is used to do the equal comparison between the two
registers read in the previous step. The Zero signal out of the ALU is used
to determine whether or not to branch. This requires setting ALUSrcA=1
and setting ALUSrcB=00 (so that the register file outputs are the ALU
inputs). The ALUOp signals will need to be set to 01 (causing the ALU to
subtract) for equality testing. The PCWriteCond signal will need to be
asserted to update the PC if the Zero output of the ALU is asserted. By
setting PCSource to 01, the value written into the PC will come from
ALUOut, which holds the branch target address computed in the previous
cycle. For conditional branches that are taken, we actually write the PC
twice: once from the output of the ALU (during the Instruction
decode/register fetch) and once from ALUOut (during the Branch

completion step). The value written into the PC last is the one used for the
next instruction fetch.

Jump:

{x, y} is the Verilog notation for concatenation of bit fields x and y
PC <= {PC [31:28], (IR[25:0]],2'b00)};

Operation: The PC is replaced by the jump address. PCSource is set to
direct the jump address to the PC, and PCWrite is asserted to write the jump
address into the PC.

4 Memory access or R-type instruction completion step
During this step, a load or store instruction accesses memory and an
arithmetic- logical instruction writes its result. When a value is retrieved
from memory, it is stored into the memory data register (MDR), where it
must be used on the next clock cycle.

Memory reference:

MDR <= Memory [ALUOut];

or

Memory [ALUOut] <= B;

Operation: If the instruction is a load, a data word is retrieved from
memory and is written into the MDR. If the instruction is a store, then the
data is written into memory. In either case, the address used is the one
computed during the previous step and stored in ALUOut. For a store, the
source operand is saved in B. (B is actually read twice, once in step 2 and
once in step 3. Luckily, the same value is read both times, since the register
number—which is stored in IR and used to read from the register file—does
not change.) The signal MemRead (for a load) or MemWrite (for a store)
will need to be asserted. In addition, for loads and stores, the signal IorD is
set to 1 to force the memory address to come from the ALU, rather than the
PC. Since MDR is written on every clock cycle, no explicit control signal
need be asserted.

Arithmetic-logical instruction (R-type):

Reg[IR[15:11]] <= ALUOut;

Operation: Place the contents of ALUOut, which corresponds to the
output of the ALU operation in the previous cycle, into the Result register.
The signal RegDst must be set to 1 to force the rd field (bits 15:11) to be
used to select the register file entry to write. RegWrite must be asserted, and
MemtoReg must be set to 0 so that the output of the ALU is written, as
opposed to the memory data output.

5 Memory read completion step
During this step, loads complete by writing back the value from memory.

Load:

Reg[IR[20:16]] <= MDR;

Operation: Write the load data, which was stored into MDR in the
previous cycle, into the register file. To do this, we set MemtoReg=1 (to
write the result from memory), assert RegWrite (to cause a write), and we
make RegDst=0 to choose the rt (bits 20:16) field as the register number.

This five-step sequence is summarized in Figure e4.5.6. From this
sequence we can determine what the control must do on each clock cycle.

FIGURE E4.5.6 Summary of the steps taken to
execute any instruction class.
Instructions take from three to five execution
steps. The first two steps are independent of the
instruction class. After these steps, an instruction
takes from one to three more cycles to complete,
depending on the instruction class. The empty
entries for the Memory access step or the
Memory read completion step indicate that the
particular instruction class takes fewer cycles. In
a multicycle implementation, a new instruction will
be started as soon as the current instruction
completes, so these cycles are not idle or
wasted. As mentioned earlier, the register file
actually reads every cycle, but as long as the IR
does not change, the values read from the
register file are identical. In particular, the value
read into register B during the Instruction decode
stage, for a branch or R-type instruction, is the
same as the value stored into B during the
Execution stage and then used in the Memory
access stage for a store word instruction.

Defining the Control
Now that we have determined what the control signals are and when they
must be asserted, we can implement the control unit. To design the control
unit for the single-cycle datapath, we used a set of truth tables that specified

the setting of the control signals based on the instruction class. For the
multicycle datapath, the control is more complex because the instruction is
executed in a series of steps. The control for the multicycle datapath must
specify both the signals to be set in any step and the next step in the
sequence.

Online Section 4.14 shows how hardware design languages are used to
design modern processors with examples of both the multicycle datapath
and the finite- state control. In modern digital systems design, the final step
of taking a hardware description to actual gates is handled by logic and
datapath synthesis tools. Appendix D shows how this process operates by
translating the multicycle control unit to a detailed hard- ware
implementation. The key ideas of control can be grasped from this chapter
without examining the material on hardware description languages or
Appendix D. However, if you want to actually do some hardware design,
Appendix C can show you what the implementations are likely to look like
at the gate level.

CPI in a Multicycle CPU
Example

Using the SPECINT2006 instruction mix shown in Figure 3.24, what
is the CPI, assuming that each state in the multicycle CPU requires 1
clock cycle?

ANSWER
The mix is 20% loads, 8% stores 10% branches, and 62% ALU (all the

rest of the mix, which we assume to be ALU instructions). From Figure
4.5.6, the number of clock cycles for each instruction class is the
following:

• Loads: 5
• Stores: 4
• ALU instructions: 4
• Branches: 3

The CPI is given by the following:

The ratio

is simply the instruction frequency for the instruction class i. We can
therefore substitute to obtain

This CPI is better than the worst-case CPI of 5.0 when all the
instructions take the same number of clock cycles. Of course, overheads
in both designs may reduce or increase this difference. The multicycle
design is probably also more cost-effective, since it uses fewer separate
components in the datapath.

The method we use to specify the multicycle control is a finite-state
machine. A finite-state machine consists of a set of states and directions on
how to change states. The directions are defined by a next-state function,
which maps the current state and the inputs to a new state. When we use a
finite-state machine for control, each state also specifies a set of outputs that
are asserted when the machine is in that state. The implementation of a
finite-state machine usually assumes that all outputs that are not explicitly

asserted are deasserted. Similarly, the correct operation of the datapath
depends on the fact that a signal that is not explicitly asserted is deasserted,
rather than acting as a don’t care. For example, the RegWrite signal should
be asserted only when a register file entry is to be written; when it is not
explicitly asserted, it must be deasserted.

finite-state machine

A sequential logic function consisting of a set of inputs and outputs, a
next-state function that maps the current state and the inputs to a new
state, and an output function that maps the current state and possibly the
inputs to a set of asserted outputs.

next-state function

A combinational function that, given the inputs and the current state,
determines the next state of a finite-state machine.

Multiplexor controls are slightly different, since they select one of the
inputs whether they are 0 or 1. Thus, in the finite-state machine, we always
specify the setting of all the multiplexor controls that we care about. When
we implement the finite-state machine with logic, setting a control to 0 may
be the default and thus may not require any gates. A simple example of a
finite-state machine appears in Appendix D, and if you are unfamiliar with
the concept of a finite-state machine, you may want to examine Appendix D
before proceeding.

The finite-state control essentially corresponds to the five steps of
execution shown on pages 4.5–15 to 4.5–20; each state in the finite-state
machine will take 1 clock cycle. The finite-state machine will consist of
several parts. Since the first two steps of execution are identical for every
instruction, the initial two states of the finite-state machine will be common
for all instructions. Steps 3 through 5 differ, depending on the opcode. After
the execution of the last step for a particular instruction class, the finite-

state machine will return to the initial state to begin fetching the next
instruction.

Figure e4.5.7 shows this abstracted representation of the finite-state
machine. To fill in the details of the finite-state machine, we will first
expand the instruction fetch and decode portion, and then we will show the
states (and actions) for the different instruction classes.

FIGURE E4.5.7 The high-level view of the finite-
state machine control.
The first steps are independent of the instruction
class; then a series of sequences that depend on
the instruction opcode are used to complete each
instruction class. After completing the actions
needed for that instruction class, the control
returns to fetch a new instruction. Each box in
this figure may represent one to several states.
The arc labeled Start marks the state in which to
begin when the first instruction is to be fetched.

We show the first two states of the finite-state machine in Figure e4.5.8
using a traditional graphic representation. We number the states to simplify
the explanation, though the numbers are arbitrary. State 0, corresponding to
step 1, is the starting state of the machine.

FIGURE E4.5.8 The instruction fetch and decode
portion of every instruction is identical.
These states correspond to the top box in the
abstract finite-state machine in Figure e4.5.7. In
the first state we assert two signals to cause the
memory to read an instruction and write it into the
Instruction register (MemRead and IRWrite), and
we set IorD to 0 to choose the PC as the address
source. The signals ALUSrcA, ALUSrcB, ALUOp,
PCWrite, and PCSource are set to compute PC +
4 and store it into the PC. (It will also be stored
into ALUOut, but never used from there.) In the
next state, we compute the branch target address
by setting ALUSrcB to 11 (causing the shifted
and sign-extended lower 16 bits of the IR to be
sent to the ALU), setting ALUSrcA to 0 and
ALUOp to 00; we store the result in the ALUOut
register, which is written on every cycle. There
are four next states that depend on the class of

the instruction, which is known during this state.
The control unit input, called Op, is used to
determine which of these arcs to follow.
Remember that all signals not explicitly asserted
are deasserted; this is particularly important for
signals that control writes. For multiplexor
controls, lack of a specific setting indicates that
we do not care about the setting of the
multiplexor.

The signals that are asserted in each state are shown within the circle
representing the state. The arcs between states define the next state and are
labeled with conditions that select a specific next state when multiple next
states are possible. After state 1, the signals asserted depend on the class of
instruction. Thus, the finite-state machine has four arcs exiting state 1,
corresponding to the four instruction classes: memory reference, R-type,
branch on equal, and jump. This process of branching to different states
depending on the instruction is called decoding, since the choice of the next
state, and hence the actions that follow, depend on the instruction class.

Figure e4.5.9 shows the portion of the finite-state machine needed to
implement the memory reference instructions. For the memory reference
instructions, the first state after fetching the instruction and registers
computes the memory address (state 2). To compute the memory address,
the ALU input multiplexors must be set so that the first input is the A
register, while the second input is the sign-extended displacement field; the
result is written into the ALUOut register. After the memory address
calculation, the memory should be read or written; this requires two
different states. If the instruction opcode is lw, then state 3 (corresponding
to the step Memory access) does the memory read (MemRead is asserted).
The output of the memory is always written into MDR. If it is sw, state 5
does a memory write (MemWrite is asserted). In states 3 and 5, the signal
IorD is set to 1 to force the memory address to come from the ALU. After
performing a write, the instruction sw has completed execution, and the
next state is state 0. If the instruction is a load, however, another state (state
4) is needed to write the result from the memory into the register file.
Setting the multiplexor controls MemtoReg=1 and RegDst=0 will send the

loaded value in the MDR to be written into the register file, using rt as the
register number. After this state, corresponding to the Memory read
completion step, the next state is state 0.

FIGURE E4.5.9 The finite-state machine for
controlling memory reference instructions
has four states.
These states correspond to the box labeled
“Memory access instructions” in Figure e4.5.7.

After performing a memory address calculation, a
separate sequence is needed for load and for
store. The setting of the control signals ALUSrcA,
ALUSrcB, and ALUOp is used to cause the
memory address computation in state 2. Loads
require an extra state to write the result from the
MDR (where the result is written in state 3) into
the register file.

To implement the R-type instructions requires two states corresponding
to steps 3 (Execute) and 4 (R-type completion). Figure e4.5.10 shows this
two-state portion of the finite-state machine. State 6 asserts ALUSrcA and
sets the ALUSrcB signals to 00; this forces the two registers that were read
from the register file to be used as inputs to the ALU. Setting ALUOp to 10
causes the ALU control unit to use the function field to set the ALU control
signals. In state 7, RegWrite is asserted to cause the register file to write,
RegDst is asserted to cause the rd field to be used as the register number of
the destination, and MemtoReg is deasserted to select ALUOut as the
source of the value to write into the register file.

FIGURE E4.5.10 R-type instructions can be
implemented with a simple two-state finite-
state machine.
These states correspond to the box labeled “R-
type instructions” in Figure e4.5.7. The first state
causes the ALU operation to occur, while the
second state causes the ALU result (which is in
ALUOut) to be written in the register file. The
three signals asserted during state 7 cause the
contents of ALUOut to be written into the register
file in the entry specified by the rd field of the
Instruction register.

For branches, only a single additional state is necessary because they
complete execution during the third step of instruction execution. During
this state, the control signals that cause the ALU to compare the contents of
registers A and B must be set, and the signals that cause the PC to be
written conditionally with the address in the ALUOut register are also set.
To perform the comparison requires that we assert ALUSrcA and set
ALUSrcB to 00, and set the ALUOp value to 01 (forcing a subtract). (We
use only the Zero output of the ALU, not the result of the subtraction.) To
control the writing of the PC, we assert PCWriteCond and set
PCSource=01, which will cause the value in the ALUOut register
(containing the branch address calculated in state 1, Figure e4.5.8) to be
written into the PC if the Zero bit out of the ALU is asserted. Figure e4.5.11
shows this single state.

FIGURE E4.5.11 The branch instruction requires
a single state.
The first three outputs that are asserted cause
the ALU to compare the registers (ALUSrcA,
ALUSrcB, and ALUOp), while the signals
PCSource and PCWriteCond perform the

conditional write if the branch condition is true.
Notice that we do not use the value written into
ALUOut; instead, we use only the Zero output of
the ALU. The branch target address is read from
ALUOut, where it was saved at the end of state 1.

The last instruction class is jump; like branch, it requires only a single
state (shown in Figure e4.5.12) to complete its execution. In this state, the
signal PCWrite is asserted to cause the PC to be written. By setting
PCSource to 10, the value supplied for writing will be the lower 26 bits of
the Instruction register with 00two added as the low-order bits concatenated
with the upper 4 bits of the PC.

FIGURE E4.5.12 The jump instruction requires a
single state.
that asserts two control signals to write the PC
with the lower 26 bits of the Instruction register
shifted left 2 bits and concatenated to the upper 4
bits of the PC of this instruction.

We can now put these pieces of the finite-state machine together to form
a specification for the control unit, as shown in Figure e4.5.13. In each
state, the signals that are asserted are shown. The next state depends on the
opcode bits of the instruction, so we label the arcs with a comparison for the
corresponding instruction opcodes.

FIGURE E4.5.13 The complete finite-state
machine control for the datapath shown in
Figure e4.5.4.
The labels on the arcs are conditions that are
tested to determine which state is the next state;
when the next state is unconditional, no label is

given. The labels inside the nodes indicate the
output signals asserted during that state; we
always specify the setting of a multiplexor control
signal if the correct operation requires it. Hence,
in some states a multiplexor control will be set to
0.

A finite-state machine can be implemented with a temporary register that
holds the current state and a block of combinational logic that determines
both the datapath signals to be asserted and the next state. Figure e4.5.14
shows how such an implementation might look. Appendix D describes in
detail how the finite-state machine is implemented using this structure. In
Section D.3, the combinational control logic for the finite-state machine of
Figure e4.5.13 implemented both with a ROM (read-only memory) and a
PLA (programmable logic array). (Also see Appendix B for a description of
these logic elements.) In the next section of this chapter, we consider
another way to represent control. Both of these techniques are simply
different representations of the same control information.

FIGURE E4.5.14 Finite-state machine controllers
are typically implemented using a block of
combinational logic and a register to hold the
current state.
The outputs of the combinational logic are the
next-state number and the control signals to be
asserted for the current state. The inputs to the
combinational logic are the current state and any
inputs used to determine the next state. In this
case, the inputs are the instruction register
opcode bits. Notice that in the finite-state
machine used in this chapter, the outputs depend
only on the current state, not on the inputs. The
elaboration below explains this in more detail.

Pipelining, which is the subject of the next section is almost always used
to accelerate the execution of instructions. For simple instructions,
pipelining is capable of achieving the higher clock rate of a multicycle
design and a single- cycle CPI of a single-clock design. In most pipelined
processors, however, some instructions take longer than a single cycle and
require multicycle control. Floating- point are one universal example. There
are many examples in the IA-32 architecture that require the use of
multicycle control.

Elaboration
The style of finite-state machine in Figure e4.5.14 is called a Moore
machine, after Edward Moore. Its identifying characteristic is that the
output depends only on the current state. For a Moore machine, the box
labeled Combinational control logic can be split into two pieces. One
piece has the control output and only the state input, while the other has
only the next-state output.

An alternative style of machine is a Mealy machine, named after
George Mealy. The Mealy machine allows both the input and the current
state to be used to determine the output. Moore machines have potential
implementation advantages in speed and size of the control unit. The
speed advantages arise because the control outputs, which are needed
early in the clock cycle, do not depend on the inputs, but only on the
current state. In Appendix D, when the implementation of this finite-state
machine is taken down to logic gates, the size advantage can be clearly
seen.The potential disadvantage of a Moore machine is that it may
require additional states. For example, in situations where there is a one-
state difference between two sequences of states, the Mealy machine may
unify the states by making the outputs depend on the inputs.

Understanding Program Performance
For a processor with a given clock rate, the relative performance between
two code segments will be determined by the product of the CPI and the
instruction count to execute each segment. As we have seen here,
instructions can vary in their CPI, even for a simple processor. In the next
two chapters, we will see that the introduction of pipelining and the use

of caches create even larger opportunities for variation in the CPI.
Although many factors that affect the CPI are controlled by the hardware
designer, the programmer, the compiler, and software system dictate what
instructions are executed, and it is this process that determines what the
effective CPI for the program will be. Programmers seeking to improve
performance must understand the role of CPI and the factors that affect
it.

Check Yourself

1. True or false: Since the jump instruction does not depend on the
register values or on computing the branch target address, it can be
completed during the second state, rather than waiting until the
third.

2. True, false, or maybe: The control signal PCWriteCond can be
replaced by PCSource[0].

4.6 An Overview of Pipelining
Never waste time.

American proverb

Pipelining is an implementation technique in which multiple
instructions are overlapped in execution. Today, pipelining is nearly
universal.

pipelining
An implementation technique in which multiple instructions are
overlapped in execution, much like an assembly line.

This section relies heavily on one analogy to give an overview of the
pipelining terms and issues. If you are interested in just the big picture, you
should concentrate on this section and then skip to Sections 4.11 and 4.12 to
see an introduction to the advanced pipelining techniques used in recent
processors such as the Intel Core i7 and ARM Cortex-A8. If you are
interested in exploring the anatomy of a pipelined computer, this section is a
good introduction to Sections 4.7 through 4.10.

Anyone who has done a lot of laundry has intuitively used pipelining.
The non-pipelined approach to laundry would be as follows:

1. Place one dirty load of clothes in the washer.
2. When the washer is finished, place the wet load in the dryer.
3. When the dryer is finished, place the dry load on a table and fold.
4. When folding is finished, ask your roommate to put the clothes

away.

When this load is done, start over with the next dirty load.
The pipelined approach takes much less time, as Figure 4.25 shows. As

soon as the washer is finished with the first load and placed in the dryer,

you load the washer with the second dirty load. When the first load is dry,
you place it on the table to start folding, move the wet load to the dryer, and
put the next dirty load into the washer. Next you have your roommate put
the first load away, you start folding the second load, the dryer has the third
load, and you put the fourth load into the washer. At this point all steps—
called stages in pipelining—are operating concurrently. As long as we have
separate resources for each stage, we can pipeline the tasks.

FIGURE 4.25 The laundry analogy for pipelining.
Ann, Brian, Cathy, and Don each have dirty
clothes to be washed, dried, folded, and put
away. The washer, dryer, “folder,” and “storer”
each take 30 minutes for their task. Sequential
laundry takes 8 hours for 4 loads of wash, while
pipelined laundry takes just 3.5 hours. We show
the pipeline stage of different loads over time by
showing copies of the four resources on this two-
dimensional time line, but we really have just one
of each resource.

The pipelining paradox is that the time from placing a single dirty sock in
the washer until it is dried, folded, and put away is not shorter for
pipelining; the reason pipelining is faster for many loads is that everything
is working in parallel, so more loads are finished per hour. Pipelining
improves throughput of our laundry system. Hence, pipelining would not
decrease the time to complete one load of laundry, but when we have many

loads of laundry to do, the improvement in throughput decreases the total
time to complete the work.

If all the stages take about the same amount of time and there is enough
work to do, then the speed-up due to pipelining is equal to the number of
stages in the pipeline, in this case four: washing, drying, folding, and
putting away. Therefore, pipelined laundry is potentially four times faster
than nonpipelined: 20 loads would take about 5 times as long as 1 load,
while 20 loads of sequential laundry takes 20 times as long as 1 load. It’s
only 2.3 times faster in Figure 4.25, because we only show 4 loads. Notice
that at the beginning and end of the workload in the pipelined version in
Figure 4.25, the pipeline is not completely full; this start-up and wind-down
affects performance when the number of tasks is not large compared to the
number of stages in the pipeline. If the number of loads is much larger than
4, then the stages will be full most of the time and the increase in
throughput will be very close to 4.

The same principles apply to processors where we pipeline instruction-
execution. MIPS instructions classically take five steps:

1. Fetch instruction from memory.
2. Read registers while decoding the instruction. The regular format of

MIPS instructions allows reading and decoding to occur
simultaneously.

3. Execute the operation or calculate an address.
4. Access an operand in data memory.
5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The
following example shows that pipelining speeds up instruction execution
just as it speeds up the laundry.

Single-Cycle versus Pipelined Performance

Example
To make this discussion concrete, let’s create a pipeline. In this example,
and in the rest of this chapter, we limit our attention to eight instructions:

load word (lw), store word (sw), add (add), subtract (sub), AND (and),
OR (or), set less than (slt), and branch on equal (beq).

Compare the average time between instructions of a single-cycle
implementation, in which all instructions take one clock cycle, to a
pipelined implementation. The operation times for the major functional
units in this example are 200 ps for memory access, 200 ps for ALU
operation, and 100 ps for register file read or write. In the single-cycle
model, every instruction takes exactly one clock cycle, so the clock cycle
must be stretched to accommodate the slowest instruction.

Answer
Figure 4.26 shows the time required for each of the eight instructions.
The single-cycle design must allow for the slowest instruction—in Figure
4.26 it is lw—so the time required for every instruction is 800 ps.
Similarly to Figure 4.25, Figure 4.27 compares nonpipelined and
pipelined execution of three load word instructions. Thus, the time
between the first and fourth instructions in the nonpipelined design is 3 ×
800 ns or 2400 ps.

FIGURE 4.26 Total time for each instruction
calculated from the time for each
component.
This calculation assumes that the multiplexors,
control unit, PC accesses, and sign extension
unit have no delay.

FIGURE 4.27 Single-cycle, nonpipelined
execution in top versus pipelined execution
in bottom.
Both use the same hardware components,
whose time is listed in Figure 4.26. In this case,
we see a fourfold speed-up on average time
between instructions, from 800 ps down to 200
ps. Compare this figure to Figure 4.25. For the
laundry, we assumed all stages were equal. If
the dryer were slowest, then the dryer stage
would set the stage time. The pipeline stage
times of a computer are also limited by the
slowest resource, either the ALU operation or
the memory access. We assume the write to
the register file occurs in the first half of the
clock cycle and the read from the register file
occurs in the second half. We use this
assumption throughout this chapter.

All the pipeline stages take a single clock cycle, so the clock cycle
must be long enough to accommodate the slowest operation. Just as the
single-cycle design must take the worst-case clock cycle of 800 ps, even
though some instructions can be as fast as 500 ps, the pipelined execution
clock cycle must have the worst-case clock cycle of 200 ps, even though
some stages take only 100 ps. Pipelining still offers a fourfold
performance improvement: the time between the first and fourth
instructions is 3 × 200 ps or 600 ps.

We can turn the pipelining speed-up discussion above into a formula. If
the stages are perfectly balanced, then the time between instructions on the
pipelined processor—assuming ideal conditions—is equal to

Under ideal conditions and with a large number of instructions, the
speed-up from pipelining is approximately equal to the number of pipe
stages; a five-stage pipeline is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a
fivefold improvement over the 800 ps nonpipelined time, or a 160 ps clock
cycle. The example shows, however, that the stages may be imperfectly
balanced. Moreover, pipelining involves some overhead, the source of
which will be clearer shortly. Thus, the time per instruction in the pipelined
processor will exceed the minimum possible, and speed-up will be less than
the number of pipeline stages.

Moreover, even our claim of fourfold improvement for our example is
not reflected in the total execution time for the three instructions: it’s 1400
ps versus 2400 ps. Of course, this is because the number of instructions is
not large. What would happen if we increased the number of instructions?
We could extend the previous figures to 1,000,003 instructions. We would
add 1,000,000 instructions in the pipelined example; each instruction adds
200 ps to the total execution time. The total execution time would be
1,000,000 × 200 ps + 1400 ps, or 200,001,400 ps. In the nonpipelined
example, we would add 1,000,000 instructions, each taking 800 ps, so total

execution time would be 1,000,000 × 800 ps + 2400 ps, or 800,002,400 ps.
Under these conditions, the ratio of total execution times for real programs
on nonpipelined to pipelined processors is close to the ratio of times
between instructions:

Pipelining improves performance by increasing instruction throughput,
as opposed to decreasing the execution time of an individual instruction,
but instruction throughput is the important metric because real programs
execute billions of instructions.

Designing Instruction Sets for Pipelining
Even with this simple explanation of pipelining, we can get insight into the
design of the MIPS instruction set, which was designed for pipelined
execution.

First, all MIPS instructions are the same length. This restriction makes it
much easier to fetch instructions in the first pipeline stage and to decode
them in the second stage. In an instruction set like the x86, where
instructions vary from 1 byte to 15 bytes, pipelining is considerably more
challenging. Modern implementations of the x86 architecture actually
translate x86 instructions into simple operations that look like MIPS
instructions and then pipeline the simple operations rather than the native
x86 instructions! (See Section 4.11.)

Second, MIPS has only a few instruction formats, with the source register
fields being located in the same place in each instruction. This symmetry
means that the second stage can begin reading the register file at the same
time that the hardware is determining what type of instruction was fetched.
If MIPS instruction formats were not symmetric, we would need to split
stage 2, resulting in six pipeline stages. We will shortly see the downside of
longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This
restriction means we can use the execute stage to calculate the memory
address and then access memory in the following stage. If we could operate

on the operands in memory, as in the x86, stages 3 and 4 would expand to
an address stage, memory stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory.
Hence, we need not worry about a single data transfer instruction requiring
two data memory accesses; the requested data can be transferred between
processor and memory in a single pipeline stage.

Pipeline Hazards
There are situations in pipelining when the next instruction cannot execute
in the following clock cycle. These events are called hazards, and there are
three different types.

Structural Hazard
The first hazard is called a structural hazard. It means that the hardware
cannot support the combination of instructions that we want to execute in
the same clock cycle. A structural hazard in the laundry room would occur
if we used a washer-dryer combination instead of a separate washer and
dryer, or if our roommate was busy doing something else and wouldn’t put
clothes away. Our carefully scheduled pipeline plans would then be foiled.

structural hazard
When a planned instruction cannot execute in the proper clock cycle
because the hardware does not support the combination of instructions
that are set to execute.

As we said above, the MIPS instruction set was designed to be pipelined,
making it fairly easy for designers to avoid structural hazards when
designing a pipeline. Suppose, however, that we had a single memory
instead of two memories. If the pipeline in Figure 4.27 had a fourth
instruction, we would see that in the same clock cycle the first instruction is
accessing data from memory while the fourth instruction is fetching an
instruction from that same memory. Without two memories, our pipeline
could have a structural hazard.

Data Hazards
Data hazards occur when the pipeline must be stalled because one step
must wait for another to complete. Suppose you found a sock at the folding
station for which no match existed. One possible strategy is to run down to
your room and search through your clothes bureau to see if you can find the
match. Obviously, while you are doing the search, loads must wait that have
completed drying and are ready to fold as well as those that have finished
washing and are ready to dry.

data hazard
Also called a pipeline data hazard. When a planned instruction
cannot execute in the proper clock cycle because data that is needed to
execute the instruction is not yet available.

In a computer pipeline, data hazards arise from the dependence of one
instruction on an earlier one that is still in the pipeline (a relationship that
does not really exist when doing laundry). For example, suppose we have
an add instruction followed immediately by a subtract instruction that uses
the sum ($s0):

add $s0, $t0, $t1
sub $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. The
add instruction doesn’t write its result until the fifth stage, meaning that we
would have to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards,
the results would not be satisfactory. These dependences happen just too
often and the delay is just too long to expect the compiler to rescue us from
this dilemma.

The primary solution is based on the observation that we don’t need to
wait for the instruction to complete before trying to resolve the data hazard.
For the code sequence above, as soon as the ALU creates the sum for the
add, we can supply it as an input for the subtract. Adding extra hardware to

retrieve the missing item early from the internal resources is called
forwarding or bypassing.

forwarding
Also called bypassing. A method of resolving a data hazard by
retrieving the missing data element from internal buffers rather than
waiting for it to arrive from programmer-visible registers or memory.

Forwarding with Two Instructions

Example
For the two instructions above, show what pipeline stages would be
connected by forwarding. Use the drawing in Figure 4.28 to represent the
datapath during the five stages of the pipeline. Align a copy of the
datapath for each instruction, similar to the laundry pipeline in Figure
4.25.

FIGURE 4.28 Graphical representation of the
instruction pipeline, similar in spirit to the
laundry pipeline in Figure 4.25.
Here we use symbols representing the physical
resources with the abbreviations for pipeline
stages used throughout the chapter. The
symbols for the five stages: IF for the instruction
fetch stage, with the box representing
instruction memory; ID for the instruction
decode/register file read stage, with the drawing
showing the register file being read; EX for the
execution stage, with the drawing representing
the ALU; MEM for the memory access stage,
with the box representing data memory; and
WB for the write-back stage, with the drawing
showing the register file being written. The
shading indicates the element is used by the
instruction. Hence, MEM has a white
background because add does not access the
data memory. Shading on the right half of the
register file or memory means the element is
read in that stage, and shading of the left half
means it is written in that stage. Hence the right
half of ID is shaded in the second stage
because the register file is read, and the left
half of WB is shaded in the fifth stage because
the register file is written.

Answer
Figure 4.29 shows the connection to forward the value in $s0 after the
execution stage of the add instruction as input to the execution stage of

the sub instruction.

FIGURE 4.29 Graphical representation of
forwarding.
The connection shows the forwarding path from
the output of the EX stage of add to the input of
the EX stage for sub, replacing the value from
register $s0 read in the second stage of sub.

In this graphical representation of events, forwarding paths are valid only
if the destination stage is later in time than the source stage. For example,
there cannot be a valid forwarding path from the output of the memory
access stage in the first instruction to the input of the execution stage of the
following, since that would mean going backward in time.

Forwarding works very well and is described in detail in Section 4.8. It
cannot prevent all pipeline stalls, however. For example, suppose the first
instruction was a load of $s0 instead of an add. As we can imagine from
looking at Figure 4.29, the desired data would be available only after the
fourth stage of the first instruction in the dependence, which is too late for
the input of the third stage of sub. Hence, even with forwarding, we would
have to stall one stage for a load-use data hazard, as Figure 4.30 shows.
This figure shows an important pipeline concept, officially called a
pipeline stall, but often given the nickname bubble. We shall see stalls
elsewhere in the pipeline. Section 4.8 shows how we can handle hard cases
like these, using either hardware detection and stalls or software that

reorders code to try to avoid load-use pipeline stalls, as this example
illustrates.

load-use data hazard
A specific form of data hazard in which the data being loaded by a load
instruction has not yet become available when it is needed by another
instruction.

pipeline stall
Also called bubble. A stall initiated in order to resolve a hazard.

Reordering Code to Avoid Pipeline Stalls

Example
Consider the following code segment in C:

a = b + e;
c = b + f;

Here is the generated MIPS code for this segment, assuming all
variables are in memory and are addressable as offsets from $t0:

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1,$t4
sw $t5, 16($t0)

Find the hazards in the preceding code segment and reorder the
instructions to avoid any pipeline stalls.

Answer

Both add instructions have a hazard because of their respective
dependence on the immediately preceding lw instruction. Notice that
bypassing eliminates several other potential hazards, including the
dependence of the first add on the first lw and any hazards for store
instructions. Moving up the third lw instruction to become the third
instruction eliminates both hazards:

On a pipelined processor with forwarding, the reordered sequence will
complete in two fewer cycles than the original version.

FIGURE 4.30 We need a stall even with
forwarding when an R-format instruction
following a load tries to use the data.
Without the stall, the path from memory access
stage output to execution stage input would be
going backward in time, which is impossible. This
figure is actually a simplification, since we cannot
know until after the subtract instruction is fetched
and decoded whether or not a stall will be
necessary. Section 4.8 shows the details of what
really happens in the case of a hazard.

Forwarding yields another insight into the MIPS architecture, in addition
to the four mentioned on pages 289–290. Each MIPS instruction writes at
most one result and does this in the last stage of the pipeline. Forwarding is
harder if there are multiple results to forward per instruction or if there is a
need to write a result early on in instruction execution.

Elaboration
The name “forwarding” comes from the idea that the result is passed
forward from an earlier instruction to a later instruction. “Bypassing”
comes from passing the result around the register file to the desired unit.

Control Hazards
The third type of hazard is called a control hazard, arising from the need
to make a decision based on the results of one instruction while others are

executing.

control hazard
Also called branch hazard. When the proper instruction cannot
execute in the proper pipeline clock cycle because the instruction that
was fetched is not the one that is needed; that is, the flow of instruction
addresses is not what the pipeline expected.

Suppose our laundry crew was given the happy task of cleaning the
uniforms of a football team. Given how filthy the laundry is, we need to
determine whether the detergent and water temperature setting we select is
strong enough to get the uniforms clean but not so strong that the uniforms
wear out sooner. In our laundry pipeline, we have to wait until the second
stage to examine the dry uniform to see if we need to change the washer
setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room
and its computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then
repeat until you have the right formula.

This conservative option certainly works, but it is slow.
The equivalent decision task in a computer is the branch instruction.

Notice that we must begin fetching the instruction following the branch on
the very next clock cycle. Nevertheless, the pipeline cannot possibly know
what the next instruction should be, since it only just received the branch
instruction from memory! Just as with laundry, one possible solution is to
stall immediately after we fetch a branch, waiting until the pipeline
determines the outcome of the branch and knows what instruction address
to fetch from.

Let’s assume that we put in enough extra hardware so that we can test
registers, calculate the branch address, and update the PC during the second
stage of the pipeline (see Section 4.9 for details). Even with this extra
hardware, the pipeline involving conditional branches would look like

Figure 4.31. The lw instruction, executed if the branch fails, is stalled one
extra 200 ps clock cycle before starting.

Performance of “Stall on Branch”

Example
Estimate the impact on the clock cycles per instruction (CPI) of stalling
on branches. Assume all other instructions have a CPI of 1.

Answer
Figure 3.28 in Chapter 3 shows that branches are 17% of the instructions
executed in SPECint2006. Since the other instructions run have a CPI of
1, and branches took one extra clock cycle for the stall, then we would
see a CPI of 1.17 and hence a slowdown of 1.17 versus the ideal case.

FIGURE 4.31 Pipeline showing stalling on every
conditional branch as solution to control
hazards.
This example assumes the conditional branch is
taken, and the instruction at the destination of the
branch is the OR instruction. There is a one-stage
pipeline stall, or bubble, after the branch. In
reality, the process of creating a stall is slightly
more complicated, as we will see in Section 4.9.
The effect on performance, however, is the same
as would occur if a bubble were inserted.

If we cannot resolve the branch in the second stage, as is often the case
for longer pipelines, then we’d see an even larger slowdown if we stall on
branches. The cost of this option is too high for most computers to use and
motivates a second solution to the control hazard using one of our great
ideas from Chapter 1:

Predict: If you’re pretty sure you have the right formula to wash
uniforms, then just predict that it will work and wash the second load
while waiting for the first load to dry.

This option does not slow down the pipeline when you are correct. When
you are wrong, however, you need to redo the load that was washed while
guessing the decision.

Computers do indeed use prediction to handle branches. One simple
approach is to predict always that branches will be untaken. When you’re

right, the pipeline proceeds at full speed. Only when branches are taken
does the pipeline stall. Figure 4.32 shows such an example.

FIGURE 4.32 Predicting that branches are not
taken as a solution to control hazard.
The top drawing shows the pipeline when the
branch is not taken. The bottom drawing shows
the pipeline when the branch is taken. As we
noted in Figure 4.31, the insertion of a bubble in
this fashion simplifies what actually happens, at
least during the first clock cycle immediately
following the branch. Section 4.9 will reveal the
details.

A more sophisticated version of branch prediction would have some
branches predicted as taken and some as untaken. In our analogy, the dark
or home uniforms might take one formula while the light or road uniforms
might take another. In the case of programming, at the bottom of loops are
branches that jump back to the top of the loop. Since they are likely to be

taken and they branch backward, we could always predict taken for
branches that jump to an earlier address.

branch prediction
A method of resolving a branch hazard that assumes a given outcome for
the branch and proceeds from that assumption rather than waiting to
ascertain the actual outcome.

Such rigid approaches to branch prediction rely on stereotypical behavior
and don’t account for the individuality of a specific branch instruction.
Dynamic hardware predictors, in stark contrast, make their guesses
depending on the behavior of each branch and may change predictions for a
branch over the life of a program. Following our analogy, in dynamic
prediction a person would look at how dirty the uniform was and guess at
the formula, adjusting the next prediction depending on the success of
recent guesses.

One popular approach to dynamic prediction of branches is keeping a
history for each branch as taken or untaken, and then using the recent past
behavior to predict the future. As we will see later, the amount and type of
history kept have become extensive, with the result being that dynamic
branch predictors can correctly predict branches with more than 90%
accuracy (see Section 4.9). When the guess is wrong, the pipeline control
must ensure that the instructions following the wrongly guessed branch
have no effect and must restart the pipeline from the proper branch address.
In our laundry analogy, we must stop taking new loads so that we can
restart the load that we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines
exacerbate the problem, in this case by raising the cost of misprediction.
Solutions to control hazards are described in more detail in Section 4.9.

Elaboration

There is a third approach to the control hazard, called delayed decision.
In our analogy, whenever you are going to make such a decision about
laundry, just place a load of nonfootball clothes in the washer while
waiting for football uniforms to dry. As long as you have enough dirty
clothes that are not affected by the test, this solution works fine.

Called the delayed branch in computers, and mentioned above, this is
the solution actually used by the MIPS architecture. The delayed branch
always executes the next sequential instruction, with the branch taking
place after that one instruction delay. It is hidden from the MIPS
assembly language programmer because the assembler can automatically
arrange the instructions to get the branch behavior desired by the
programmer. MIPS software will place an instruction immediately after
the delayed branch instruction that is not affected by the branch, and a
taken branch changes the address of the instruction that follows this safe
instruction. In our example, the add instruction before the branch in
Figure 4.31 does not affect the branch and can be moved after the branch
to fully hide the branch delay. Since delayed branches are useful when
the branches are short, no processor uses a delayed branch of more than
one cycle. For longer branch delays, hardware-based branch prediction is
usually used.

Pipeline Overview Summary
Pipelining is a technique that exploits parallelism among the instructions in
a sequential instruction stream. It has the substantial advantage that, unlike
programming a multiprocessor, it is fundamentally invisible to the
programmer.

In the next few sections of this chapter, we cover the concept of
pipelining using the MIPS instruction subset from the single-cycle
implementation in Section 4.4 and show a simplified version of its pipeline.
We then look at the problems that pipelining introduces and the
performance attainable under typical situations.

If you wish to focus more on the software and the performance
implications of pipelining, you now have sufficient background to skip to
Section 4.11. Section 4.11 introduces advanced pipelining concepts, such as
superscalar and dynamic scheduling, and Section 4.12 examines the
pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is
implemented and the challenges of dealing with hazards, you can proceed
to examine the design of a pipelined datapath and the basic control,
explained in Section 4.7. You can then use this understanding to explore the
implementation of forwarding and stalls in Section 4.8. You can then read
Section 4.9 to learn more about solutions to branch hazards, and then see
how exceptions are handled in Section 4.10.

Check Yourself
For each code sequence below, state whether it must stall, can avoid
stalls using only forwarding, or can execute without stalling or
forwarding.

Sequence 1 Sequence 2 Sequence 3
lw $t0,0($t0) add $t1,$t0,$t0 addi $t1,$t0,#1

add $t1,$t0,$t0 addi $t2,$t0,#5 addi $t2,$t0,#2

 addi $t4,$t1,#5 addi $t3,$t0,#2

 addi $t3,$t0,#4

 addi $t5,$t0,#5

Understanding Program Performance
Outside the memory system, the effective operation of the pipeline is
usually the most important factor in determining the CPI of the processor
and hence its performance. As we will see in Section 4.11, understanding
the performance of a modern multiple-issue pipelined processor is
complex and requires understanding more than just the issues that arise
in a simple pipelined processor. Nonetheless, structural, data, and control
hazards remain important in both simple pipelines and more
sophisticated ones.

For modern pipelines, structural hazards usually revolve around the
floating-point unit, which may not be fully pipelined, while control
hazards are usually more of a problem in integer programs, which tend to
have higher branch frequencies as well as less predictable branches. Data
hazards can be performance bottlenecks in both integer and floating-
point programs. Often it is easier to deal with data hazards in floating-
point programs because the lower branch frequency and more regular
memory access patterns allow the compiler to try to schedule instructions
to avoid hazards. It is more difficult to perform such optimizations in
integer programs that have less regular memory access, involving more
use of pointers. As we will see in Section 4.11, there are more ambitious
compiler and hardware techniques for reducing data dependences
through scheduling.

The BIG Picture
Pipelining increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. Pipelining
does not reduce the time it takes to complete an individual instruction,
also called the latency. For example, the five-stage pipeline still takes 5
clock cycles for the instruction to complete. In the terms used in Chapter
1, pipelining improves instruction throughput rather than individual
instruction execution time or latency.

latency (pipeline)
The number of stages in a pipeline or the number of stages between
two instructions during execution.

Instruction sets can either simplify or make life harder for pipeline
designers, who must already cope with structural, control, and data
hazards. Branch prediction and forwarding help make a computer fast
while still getting the right answers.

4.7 Pipelined Datapath and Control
There is less in this than meets the eye.

Tallulah Bankhead, remark to Alexander Woollcott, 1922

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the
pipeline stages identified. The division of an instruction into five stages
means a five-stage pipeline, which in turn means that up to five instructions
will be in execution during any single clock cycle. Thus, we must separate
the datapath into five pieces, with each piece named corresponding to a
stage of instruction execution:

1. IF: Instruction fetch
2. ID: Instruction decode and register file read
3. EX: Execution or address calculation
4. MEM: Data memory access
5. WB: Write back

FIGURE 4.33 The single-cycle datapath from
Section 4.4 (similar to Figure 4.17).
Each step of the instruction can be mapped onto
the datapath from left to right. The only
exceptions are the update of the PC and the
write-back step, shown in color, which sends
either the ALU result or the data from memory to
the left to be written into the register file.
(Normally we use color lines for control, but these
are data lines.)

In Figure 4.33, these five components correspond roughly to the way the
data-path is drawn; instructions and data move generally from left to right

through the five stages as they complete execution. Returning to our
laundry analogy, clothes get cleaner, drier, and more organized as they
move through the line, and they never move backward.

There are, however, two exceptions to this left-to-right flow of
instructions:

■ The write-back stage, which places the result back into the register
file in the middle of the datapath
■ The selection of the next value of the PC, choosing between the
incremented PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction;
these reverse data movements influence only later instructions in the
pipeline. Note that the first right-to-left flow of data can lead to data
hazards and the second leads to control hazards.

One way to show what happens in pipelined execution is to pretend that
each instruction has its own datapath, and then to place these datapaths on a
timeline to show their relationship. Figure 4.34 shows the execution of the
instructions in Figure 4.27 by displaying their private datapaths on a
common timeline. We use a stylized version of the datapath in Figure 4.33
to show the relationships in Figure 4.34.

FIGURE 4.34 Instructions being executed using
the single-cycle datapath in Figure 4.33,
assuming pipelined execution.
Similar to Figures 4.28 through 4.30, this figure
pretends that each instruction has its own
datapath, and shades each portion according to
use. Unlike those figures, each stage is labeled
by the physical resource used in that stage,
corresponding to the portions of the datapath in
Figure 4.33. IM represents the instruction
memory and the PC in the instruction fetch stage,
Reg stands for the register file and sign extender
in the instruction decode/register file read stage
(ID), and so on. To maintain proper time order,
this stylized datapath breaks the register file into
two logical parts: registers read during register
fetch (ID) and registers written during write back
(WB). This dual use is represented by drawing
the unshaded left half of the register file using
dashed lines in the ID stage, when it is not being
written, and the unshaded right half in dashed
lines in the WB stage, when it is not being read.

As before, we assume the register file is written in
the first half of the clock cycle and the register file
is read during the second half.

Figure 4.34 seems to suggest that three instructions need three datapaths.
Instead, we add registers to hold data so that portions of a single datapath
can be shared during instruction execution.

For example, as Figure 4.34 shows, the instruction memory is used
during only one of the five stages of an instruction, allowing it to be shared
by following instructions during the other four stages. To retain the value of
an individual instruction for its other four stages, the value read from
instruction memory must be saved in a register. Similar arguments apply to
every pipeline stage, so we must place registers wherever there are dividing
lines between stages in Figure 4.33. Returning to our laundry analogy, we
might have a basket between each pair of stages to hold the clothes for the
next step.

Figure 4.35 shows the pipelined datapath with the pipeline registers high-
lighted. All instructions advance during each clock cycle from one pipeline
register to the next. The registers are named for the two stages separated by
that register. For example, the pipeline register between the IF and ID
stages is called IF/ID.

FIGURE 4.35 The pipelined version of the
datapath in Figure 4.33.
The pipeline registers, in color, separate each
pipeline stage. They are labeled by the stages
that they separate; for example, the first is
labeled IF/ID because it separates the instruction
fetch and instruction decode stages. The
registers must be wide enough to store all the
data corresponding to the lines that go through
them. For example, the IF/ID register must be 64
bits wide, because it must hold both the 32-bit
instruction fetched from memory and the
incremented 32-bit PC address. We will expand
these registers over the course of this chapter,
but for now the other three pipeline registers
contain 128, 97, and 64 bits, respectively.

Notice that there is no pipeline register at the end of the write-back stage.
All instructions must update some state in the processor—the register file,
memory, or the PC—so a separate pipeline register is redundant to the state
that is updated. For example, a load instruction will place its result in 1 of
the 32 registers, and any later instruction that needs that data will simply
read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it
or by setting it to a branch destination address. The PC can be thought of as

a pipeline register: one that feeds the IF stage of the pipeline. Unlike the
shaded pipeline registers in Figure 4.35, however, the PC is part of the
visible architectural state; its contents must be saved when an exception
occurs, while the contents of the pipeline registers can be discarded. In the
laundry analogy, you could think of the PC as corresponding to the basket
that holds the load of dirty clothes before the wash step.

To show how the pipelining works, throughout this chapter we show
sequences of figures to demonstrate operation over time. These extra pages
would seem to require much more time for you to understand. Fear not; the
sequences take much less time than it might appear, because you can
compare them to see what changes occur in each clock cycle. Section 4.8
describes what happens when there are data hazards between pipelined
instructions; ignore them for now.

Figures 4.36 through 4.38, our first sequence, show the active portions of
the datapath highlighted as a load instruction goes through the five stages of
pipelined execution. We show a load first because it is active in all five
stages. As in Figures 4.28 through 4.30, we highlight the right half of
registers or memory when they are being read and highlight the left half
when they are being written.

FIGURE 4.36 IF and ID: First and second pipe
stages of an instruction, with the active
portions of the datapath in Figure 4.35
highlighted.
The highlighting convention is the same as that
used in Figure 4.28. As in Section 4.2, there is no
confusion when reading and writing registers,
because the contents change only on the clock
edge. Although the load needs only the top
register in stage 2, the processor doesn’t know

what instruction is being decoded, so it sign-
extends the 16-bit constant and reads both
registers into the ID/EX pipeline register. We
don’t need all three operands, but it simplifies
control to keep all three.

FIGURE 4.37 EX: The third pipe stage of a load
instruction, highlighting the portions of the
datapath in Figure 4.35 used in this pipe
stage.
The register is added to the sign-extended
immediate, and the sum is placed in the EX/MEM
pipeline register.

FIGURE 4.38 MEM and WB: The fourth and fifth
pipe stages of a load instruction, highlighting
the portions of the datapath in Figure 4.35
used in this pipe stage.
Data memory is read using the address in the
EX/MEM pipeline registers, and the data is
placed in the MEM/WB pipeline register. Next,
data is read from the MEM/WB pipeline register
and written into the register file in the middle of

the datapath. Note: there is a bug in this design
that is repaired in Figure 4.41.

We show the instruction abbreviation lw with the name of the pipe stage
that is active in each figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.36 shows the
instruction being read from memory using the address in the PC
and then being placed in the IF/ID pipeline register. The PC
address is incremented by 4 and then written back into the PC to be
ready for the next clock cycle. This incremented address is also
saved in the IF/ID pipeline register in case it is needed later for an
instruction, such as beq. The computer cannot know which type of
instruction is being fetched, so it must prepare for any instruction,
passing potentially needed information down the pipeline.

2. Instruction decode and register file read: The bottom portion of
Figure 4.36 shows the instruction portion of the IF/ID pipeline
register supplying the 16-bit immediate field, which is sign-
extended to 32 bits, and the register numbers to read the two
registers. All three values are stored in the ID/EX pipeline register,
along with the incremented PC address. We again transfer
everything that might be needed by any instruction during a later
clock cycle.

3. Execute or address calculation: Figure 4.37 shows that the load
instruction reads the contents of register 1 and the sign-extended
immediate from the ID/EX pipeline register and adds them using
the ALU. That sum is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the load
instruction reading the data memory using the address from the
EX/MEM pipeline register and loading the data into the MEM/WB
pipeline register.

5. Write-back: The bottom portion of Figure 4.38 shows the final step:
reading the data from the MEM/WB pipeline register and writing it
into the register file in the middle of the figure.

This walk-through of the load instruction shows that any information
needed in a later pipe stage must be passed to that stage via a pipeline
register. Walking through a store instruction shows the similarity of
instruction execution, as well as passing the information for later stages.
Here are the five pipe stages of the store instruction:

1. Instruction fetch: The instruction is read from memory using the
address in the PC and then is placed in the IF/ID pipeline register.
This stage occurs before the instruction is identified, so the top
portion of Figure 4.36 works for store as well as load.

2. Instruction decode and register file read: The instruction in the
IF/ID pipeline register supplies the register numbers for reading
two registers and extends the sign of the 16-bit immediate. These
three 32-bit values are all stored in the ID/EX pipeline register. The
bottom portion of Figure 4.36 for load instructions also shows the
operations of the second stage for stores. These first two stages are
executed by all instructions, since it is too early to know the type of
the instruction.

3. Execute and address calculation: Figure 4.39 shows the third step;
the effective address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.40 shows the data being
written to memory. Note that the register containing the data to be
stored was read in an earlier stage and stored in ID/EX. The only
way to make the data available during the MEM stage is to place
the data into the EX/MEM pipeline register in the EX stage, just as
we stored the effective address into EX/MEM.

5. Write-back: The bottom portion of Figure 4.40 shows the final step
of the store. For this instruction, nothing happens in the write-back
stage. Since every instruction behind the store is already in
progress, we have no way to accelerate those instructions. Hence,
an instruction passes through a stage even if there is nothing to do,
because later instructions are already progressing at the maximum
rate.

FIGURE 4.39 EX: The third pipe stage of a store
instruction.
Unlike the third stage of the load instruction in
Figure 4.37, the second register value is loaded
into the EX/MEM pipeline register to be used in
the next stage. Although it wouldn’t hurt to always
write this second register into the EX/MEM
pipeline register, we write the second register
only on a store instruction to make the pipeline
easier to understand.

FIGURE 4.40 MEM and WB: The fourth and fifth
pipe stages of a store instruction.
In the fourth stage, the data is written into data
memory for the store. Note that the data comes
from the EX/MEM pipeline register and that
nothing is changed in the MEM/WB pipeline
register. Once the data is written in memory,
there is nothing left for the store instruction to do,
so nothing happens in stage 5.

The store instruction again illustrates that to pass something from an
early pipe stage to a later pipe stage, the information must be placed in a
pipeline register; otherwise, the information is lost when the next
instruction enters that pipeline stage. For the store instruction we needed to
pass one of the registers read in the ID stage to the MEM stage, where it is
stored in memory. The data was first placed in the ID/EX pipeline register
and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of
the datapath—such as instruction memory, register read ports, ALU, data
memory, and register write port—can be used only within a single pipeline
stage. Otherwise, we would have a structural hazard (see page 290). Hence
these components, and their control, can be associated with a single pipeline
stage.

Now we can uncover a bug in the design of the load instruction. Did you
see it? Which register is changed in the final stage of the load? More
specifically, which instruction supplies the write register number? The
instruction in the IF/ID pipeline register supplies the write register number,
yet this instruction occurs considerably after the load instruction!

Hence, we need to preserve the destination register number in the load
instruction. Just as store passed the register contents from the ID/EX to the
EX/MEM pipeline registers for use in the MEM stage, load must pass the
register number from the ID/EX through EX/MEM to the MEM/WB
pipeline register for use in the WB stage. Another way to think about the
passing of the register number is that to share the pipelined datapath, we
need to preserve the instruction read during the IF stage, so each pipeline
register contains a portion of the instruction needed for that stage and later
stages.

Figure 4.41 shows the correct version of the datapath, passing the write
register number first to the ID/EX register, then to the EX/MEM register,
and finally to the MEM/WB register. The register number is used during the
WB stage to specify the register to be written. Figure 4.42 is a single
drawing of the corrected datapath, highlighting the hardware used in all five
stages of the load word instruction in Figures 4.36 through 4.38. See
Section 4.9 for an explanation of how to make the branch instruction work
as expected.

FIGURE 4.41 The corrected pipelined datapath
to handle the load instruction properly.
The write register number now comes from the
MEM/WB pipeline register along with the data.
The register number is passed from the ID pipe
stage until it reaches the MEM/WB pipeline
register, adding five more bits to the last three
pipeline registers. This new path is shown in
color.

FIGURE 4.42 The portion of the datapath in Figure
4.41 that is used in all five stages of a load
instruction.

Graphically Representing Pipelines
Pipelining can be difficult to understand, since many instructions are
simultaneously executing in a single datapath in every clock cycle. To aid
understanding, there are two basic styles of pipeline figures: multiple-clock-
cycle pipeline diagrams, such as Figure 4.34 on page 300, and single-clock-
cycle pipeline diagrams, such as Figures 4.36 through 4.40. The multiple-
clock-cycle diagrams are simpler but do not contain all the details. For
example, consider the following five-instruction sequence:

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)
add $14, $5, $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these
instructions. Time advances from left to right across the page in these
diagrams, and instructions advance from the top to the bottom of the page,
similar to the laundry pipeline in Figure 4.25. A representation of the

pipeline stages is placed in each portion along the instruction axis,
occupying the proper clock cycles. These stylized datapaths represent the
five stages of our pipeline graphically, but a rectangle naming each pipe
stage works just as well. Figure 4.44 shows the more traditional version of
the multiple-clock-cycle pipeline diagram. Note that Figure 4.43 shows the
physical resources used at each stage, while Figure 4.44 uses the name of
each stage.

FIGURE 4.43 Multiple-clock-cycle pipeline
diagram of five instructions.
This style of pipeline representation shows the
complete execution of instructions in a single
figure. Instructions are listed in instruction
execution order from top to bottom, and clock
cycles move from left to right. Unlike Figure 4.28,
here we show the pipeline registers between
each stage. Figure 4.44 shows the traditional way
to draw this diagram.

FIGURE 4.44 Traditional multiple-clock-cycle
pipeline diagram of five instructions in Figure
4.43.

Single-clock-cycle pipeline diagrams show the state of the entire datapath
during a single clock cycle, and usually all five instructions in the pipeline
are identified by labels above their respective pipeline stages. We use this
type of figure to show the details of what is happening within the pipeline
during each clock cycle; typically, the drawings appear in groups to show
pipeline operation over a sequence of clock cycles. We use multiple-clock-

cycle diagrams to give overviews of pipelining situations. (Section
4.14 gives more illustrations of single-clock diagrams if you would like to
see more details about Figure 4.43.) A single-clock-cycle diagram
represents a vertical slice through a set of multiple-clock-cycle diagrams,
showing the usage of the datapath by each of the instructions in the pipeline
at the designated clock cycle. For example, Figure 4.45 shows the single-
clock-cycle diagram corresponding to clock cycle 5 of Figures 4.43 and
4.44. Obviously, the single-clock-cycle diagrams have more detail and take
significantly more space to show the same number of clock cycles. The
exercises ask you to create such diagrams for other code sequences.

Check Yourself
A group of students were debating the efficiency of the five-stage
pipeline when one student pointed out that not all instructions are active
in every stage of the pipeline. After deciding to ignore the effects of

hazards, they made the following four statements. Which ones are
correct?

1. Allowing jumps, branches, and ALU instructions to take fewer
stages than the five required by the load instruction will increase
pipeline performance under all circumstances.

2. Trying to allow some instructions to take fewer cycles does not help,
since the throughput is determined by the clock cycle; the number
of pipe stages per instruction affects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the
write-back of the result, but branches and jumps can take fewer
cycles, so there is some opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should
explore making the pipeline longer, so that instructions take more
cycles, but the cycles are shorter. This could improve performance.

FIGURE 4.45 The single-clock-cycle diagram
corresponding to clock cycle 5 of the pipeline
in Figures 4.43 and 4.44.
As you can see, a single-clock-cycle figure is a
vertical slice through a multiple-clock-cycle
diagram.

Pipelined Control
In the 6600 Computer, perhaps even more than in any previous
computer, the control system is the difference.

James Thornton, Design of a Computer: The Control Data 6600, 1970

Just as we added control to the single-cycle datapath in Section 4.3, we
now add control to the pipelined datapath. We start with a simple design
that views the problem through rose-colored glasses.

The first step is to label the control lines on the existing datapath. Figure
4.46 shows those lines. We borrow as much as we can from the control for
the simple datapath in Figure 4.17. In particular, we use the same ALU
control logic, branch logic, destination-register-number multiplexor, and
control lines. These functions are defined in Figures 4.12, 4.16, and 4.18.

We reproduce the key information in Figures 4.47 through 4.49 in two
pages in this section to make the following discussion easier to follow.

FIGURE 4.46 The pipelined datapath of Figure
4.41 with the control signals identified.
This datapath borrows the control logic for PC
source, register destination number, and ALU
control from Section 4.4. Note that we now need
the 6-bit funct field (function code) of the
instruction in the EX stage as input to ALU
control, so these bits must also be included in the
ID/EX pipeline register. Recall that these 6 bits
are also the 6 least significant bits of the
immediate field in the instruction, so the ID/EX
pipeline register can supply them from the
immediate field since sign extension leaves these
bits unchanged.

FIGURE 4.47 A copy of Figure 4.12.
This figure shows how the ALU control bits are
set depending on the ALUOp control bits and the
different function codes for the R-type instruction.

FIGURE 4.48 A copy of Figure 4.16.
The function of each of seven control signals is
defined. The ALU control lines (ALUOp) are
defined in the second column of Figure 4.47.
When a 1-bit control to a 2-way multiplexor is
asserted, the multiplexor selects the input
corresponding to 1. Otherwise, if the control is
deasserted, the multiplexor selects the 0 input.
Note that PCSrc is controlled by an AND gate in
Figure 4.46. If the Branch signal and the ALU
Zero signal are both set, then PCSrc is 1;
otherwise, it is 0. Control sets the Branch signal
only during a beq instruction; otherwise, PCSrc is
set to 0.

FIGURE 4.49 The values of the control lines are
the same as in Figure 4.18, but they have
been shuffled into three groups
corresponding to the last three pipeline
stages.

As was the case for the single-cycle implementation, we assume that the
PC is written on each clock cycle, so there is no separate write signal for the
PC. By the same argument, there are no separate write signals for the
pipeline registers (IF/ID, ID/EX, EX/MEM, and MEM/WB), since the
pipeline registers are also written during each clock cycle.

To specify control for the pipeline, we need only set the control values
during each pipeline stage. Because each control line is associated with a
component active in only a single pipeline stage, we can divide the control
lines into five groups according to the pipeline stage.

1. Instruction fetch: The control signals to read instruction memory and
to write the PC are always asserted, so there is nothing special to
control in this pipeline stage.

2. Instruction decode/register file read: As in the previous stage, the
same thing happens at every clock cycle, so there are no optional
control lines to set.

3. Execution/address calculation: The signals to be set are RegDst,
ALUOp, and ALUSrc (see Figures 4.47 and 4.48). The signals
select the Result register, the ALU operation, and either Read data
2 or a sign-extended immediate for the ALU.

4. Memory access: The control lines set in this stage are Branch,
MemRead, and MemWrite. The branch equal, load, and store
instructions set these signals, respectively. Recall that PCSrc in
Figure 4.48 selects the next sequential address unless control
asserts Branch and the ALU result was 0.

5. Write-back: The two control lines are MemtoReg, which decides
between sending the ALU result or the memory value to the
register file, and Reg-Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines
unchanged, we can use the same control values. Figure 4.49 has the same
values as in Section 4.4, but now the nine control lines are grouped by
pipeline stage.

Implementing control means setting the nine control lines to these values
in each stage for each instruction. The simplest way to do this is to extend
the pipeline registers to include control information.

Since the control lines start with the EX stage, we can create the control
information during instruction decode. Figure 4.50 above shows that these
control signals are then used in the appropriate pipeline stage as the
instruction moves down the pipeline, just as the destination register number
for loads moves down the pipeline in Figure 4.41. Figure 4.51 shows the
full datapath with the extended pipeline registers and with the control lines

connected to the proper stage. (Section 4.14 gives more examples of
MIPS code executing on pipelined hardware using single-clock diagrams, if
you would like to see more details.)

FIGURE 4.50 The control lines for the final three
stages.
Note that four of the nine control lines are used in
the EX phase, with the remaining five control
lines passed on to the EX/MEM pipeline register
extended to hold the control lines; three are used
during the MEM stage, and the last two are
passed to MEM/WB for use in the WB stage.

FIGURE 4.51 The pipelined datapath of Figure
4.46, with the control signals connected to the
control portions of the pipeline registers.
The control values for the last three stages are
created during the instruction decode stage and
then placed in the ID/EX pipeline register. The
control lines for each pipe stage are used, and
remaining control lines are then passed to the
next pipeline stage.

4.8 Data Hazards: Forwarding versus Stalling
What do you mean, why’s it got to be built? It’s a bypass. You’ve got to
build bypasses.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy, 1979

The examples in the previous section show the power of pipelined
execution and how the hardware performs the task. It’s now time to take off

the rose-colored glasses and look at what happens with real programs. The
instructions in Figures 4.43 through 4.45 were independent; none of them
used the results calculated by any of the others. Yet in Section 4.6, we saw
that data hazards are obstacles to pipelined execution.

Let’s look at a sequence with many dependences, shown in color:

The last four instructions are all dependent on the result in register $2 of
the first instruction. If register $2 had the value 10 before the subtract
instruction and −20 afterwards, the programmer intends that −20 will be
used in the following instructions that refer to register $2.

How would this sequence perform with our pipeline? Figure 4.52
illustrates the execution of these instructions using a multiple-clock-cycle
pipeline representation. To demonstrate the execution of this instruction
sequence in our current pipeline, the top of Figure 4.52 shows the value of
register $2, which changes during the middle of clock cycle 5, when the sub
instruction writes its result.

FIGURE 4.52 Pipelined dependences in a five-
instruction sequence using simplified
datapaths to show the dependences.
All the dependent actions are shown in color, and
“CC 1” at the top of the figure means clock cycle
1. The first instruction writes into $2, and all the
following instructions read $2. This register is
written in clock cycle 5, so the proper value is
unavailable before clock cycle 5. (A read of a
register during a clock cycle returns the value
written at the end of the first half of the cycle,
when such a write occurs.) The colored lines from
the top datapath to the lower ones show the
dependences. Those that must go backward in
time are pipeline data hazards.

The potential hazard of add can be resolved by the design of the register
file hardware: What happens when a register is read and written in the same
clock cycle? We assume that the write is in the first half of the clock cycle
and the read is in the second half, so the read delivers what is written. As is

the case for many implementations of register files, we have no data hazard
in this case.

Figure 4.52 shows that the values read for register $2 would not be the
result of the sub instruction unless the read occurred during clock cycle 5 or
later. Thus, the instructions that would get the correct value of −20 are add
and sw; the AND and OR instructions would get the incorrect value 10! Using
this style of drawing, such problems become apparent when a dependence
line goes backward in time.

As mentioned in Section 4.6, the desired result is available at the end of
the EX stage or clock cycle 3. When is the data actually needed by the AND
and OR instructions? At the beginning of the EX stage, or clock cycles 4 and
5, respectively. Thus, we can execute this segment without stalls if we
simply forward the data as soon as it is available to any units that need it
before it is available to read from the register file.

How does forwarding work? For simplicity in the rest of this section, we
consider only the challenge of forwarding to an operation in the EX stage,
which may be either an ALU operation or an effective address calculation.
This means that when an instruction tries to use a register in its EX stage
that an earlier instruction intends to write in its WB stage, we actually need
the values as inputs to the ALU.

A notation that names the fields of the pipeline registers allows for a
more precise notation of dependences. For example, “ID/EX.RegisterRs”
refers to the number of one register whose value is found in the pipeline
register ID/EX; that is, the one from the first read port of the register file.
The first part of the name, to the left of the period, is the name of the
pipeline register; the second part is the name of the field in that register.
Using this notation, the two pairs of hazard conditions are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

The first hazard in the sequence on page 316 is on register $2, between
the result of sub $2,$1,$3 and the first read operand of and $12,$2,$5.

This hazard can be detected when the and instruction is in the EX stage and
the prior instruction is in the MEM stage, so this is hazard 1a:

Dependence Detection

Example
Classify the dependences in this sequence from page 316:

Answer
As mentioned above, the sub-and is a type 1a hazard. The remaining
hazards are as follows:

■ The sub-or is a type 2b hazard:

■ The two dependences on sub-add are not hazards because the
register file supplies the proper data during the ID stage of add.
■ There is no data hazard between sub and sw because sw reads $2
the clock cycle aftersub writes $2.

Because some instructions do not write registers, this policy is
inaccurate; sometimes it would forward when it shouldn’t. One solution is

simply to check to see if the RegWrite signal will be active: examining the
WB control field of the pipeline register during the EX and MEM stages
determines whether RegWrite is asserted. Recall that MIPS requires that
every use of $0 as an operand must yield an operand value of 0. In the event
that an instruction in the pipeline has $0 as its destination (for example,
sll$0, $1, 2), we want to avoid forwarding its possibly nonzero result
value. Not forwarding results destined for $0 frees the assembly
programmer and the compiler of any requirement to avoid using $0 as a
destination. The conditions above thus work properly as long we add
EX/MEM.RegisterRd ≠ 0 to the first hazard condition and
MEM/WB.RegisterRd ≠ 0 to the second.

Now that we can detect hazards, half of the problem is resolved—but we
must still forward the proper data.

Figure 4.53 shows the dependences between the pipeline registers and the
inputs to the ALU for the same code sequence as in Figure 4.52. The
change is that the dependence begins from a pipeline register, rather than
waiting for the WB stage to write the register file. Thus, the required data
exists in time for later instructions, with the pipeline registers holding the
data to be forwarded.

FIGURE 4.53 The dependences between the
pipeline registers move forward in time, so it
is possible to supply the inputs to the ALU
needed by the AND instruction and OR
instruction by forwarding the results found in
the pipeline registers.
The values in the pipeline registers show that the
desired value is available before it is written into
the register file. We assume that the register file
forwards values that are read and written during
the same clock cycle, so the add does not stall,
but the values come from the register file instead
of a pipeline register. Register file “forwarding”—
that is, the read gets the value of the write in that
clock cycle—is why clock cycle 5 shows register
$2 having the value 10 at the beginning and − 20
at the end of the clock cycle. As in the rest of this
section, we handle all forwarding except for the
value to be stored by a store instruction.

If we can take the inputs to the ALU from any pipeline register rather
than just ID/EX, then we can forward the proper data. By adding
multiplexors to the input of the ALU, and with the proper controls, we can
run the pipeline at full speed in the presence of these data dependences.

For now, we will assume the only instructions we need to forward are the
four R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a
close-up of the ALU and pipeline register before and after adding
forwarding. Figure 4.55 shows the values of the control lines for the ALU
multiplexors that select either the register file values or one of the
forwarded values.

FIGURE 4.54 On the top are the ALU and
pipeline registers before adding forwarding.
On the bottom, the multiplexors have been
expanded to add the forwarding paths, and we
show the forwarding unit. The new hardware is
shown in color. This figure is a stylized drawing,
however, leaving out details from the full datapath

such as the sign extension hardware. Note that
the ID/EX.RegisterRt field is shown twice, once to
connect to the Mux and once to the forwarding
unit, but it is a single signal. As in the earlier
discussion, this ignores forwarding of a store
value to a store instruction. Also note that this
mechanism works for slt instructions as well.

FIGURE 4.55 The control values for the
forwarding multiplexors in Figure 4.54.
The signed immediate that is another input to the
ALU is described in the Elaboration at the end of
this section.

This forwarding control will be in the EX stage, because the ALU
forwarding multiplexors are found in that stage. Thus, we must pass the
operand register numbers from the ID stage via the ID/EX pipeline register
to determine whether to forward values. We already have the rt field (bits
20–16). Before forwarding, the ID/EX register had no need to include space
to hold the rs field. Hence, rs (bits 25–21) is added to ID/EX.

Let’s now write both the conditions for detecting hazards and the control
signals to resolve them:

1. EX hazard:

Note that the EX/MEM.RegisterRd field is the register destination for
either an ALU instruction (which comes from the Rd field of the
instruction) or a load (which comes from the Rt field).

This case forwards the result from the previous instruction to either input
of the ALU. If the previous instruction is going to write to the register file,
and the write register number matches the read register number of ALU
inputs A or B, provided it is not register 0, then steer the multiplexor to pick
the value instead from the pipeline register EX/MEM.

2. MEM hazard:

As mentioned above, there is no hazard in the WB stage, because we
assume that the register file supplies the correct result if the instruction in
the ID stage reads the same register written by the instruction in the WB
stage. Such a register file performs another form of forwarding, but it
occurs within the register file.

One complication is potential data hazards between the result of the
instruction in the WB stage, the result of the instruction in the MEM stage,
and the source operand of the instruction in the ALU stage. For example,
when summing a vector of numbers in a single register, a sequence of
instructions will all read and write to the same register:
add $1,$1,$2add $1,$1,$3add $1,$1,$4

. . .
In this case, the result is forwarded from the MEM stage because the

result in the MEM stage is the more recent result. Thus, the control for the
MEM hazard would be (with the additions highlighted):

Figure 4.56 shows the hardware necessary to support forwarding for
operations that use results during the EX stage. Note that the
EX/MEM.RegisterRd field is the register destination for either an ALU
instruction (which comes from the Rd field of the instruction) or a load
(which comes from the Rt field).

FIGURE 4.56 The datapath modified to resolve
hazards via forwarding.
Compared with the datapath in Figure 4.51, the
additions are the multiplexors to the inputs to the
ALU. This figure is a more stylized drawing,
however, leaving out details from the full
datapath, such as the branch hardware and the
sign extension hardware.

 Section 4.14 shows two pieces of MIPS code with hazards that
cause forwarding, if you would like to see more illustrated examples using
single-cycle pipeline drawings.

Elaboration

Forwarding can also help with hazards when store instructions are
dependent on other instructions. Since they use just one data value during
the MEM stage, forwarding is easy. However, consider loads
immediately followed by stores, useful when performing memory-to-
memory copies in the MIPS architecture. Since copies are frequent, we
need to add more forwarding hardware to make them run faster. If we
were to redraw Figure 4.53, replacing the sub and AND instructions with
lw and sw, we would see that it is possible to avoid a stall, since the data
exists in the MEM/WB register of a load instruction in time for its use in
the MEM stage of a store instruction. We would need to add forwarding
into the memory access stage for this option. We leave this modification
as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads
and stores, is missing from the datapath in Figure 4.56. Since central
control decides between register and immediate, and since the
forwarding unit chooses the pipeline register for a register input to the
ALU, the easiest solution is to add a 2:1 multiplexor that chooses
between the ForwardB multiplexor output and the signed immediate.
Figure 4.57 shows this addition.

FIGURE 4.57 A close-up of the datapath in Figure
4.54 shows a 2:1 multiplexor, which has been
added to select the signed immediate as an
ALU input.

Data Hazards and Stalls
If at first you don’t succeed, redefine success.

Anonymous

As we said in Section 4.6, one case where forwarding cannot save the
day is when an instruction tries to read a register following a load
instruction that writes the same register. Figure 4.58 illustrates the problem.
The data is still being read from memory in clock cycle 4 while the ALU is
performing the operation for the following instruction. Something must stall
the pipeline for the combination of load followed by an instruction that
reads its result.

FIGURE 4.58 A pipelined sequence of
instructions.
Since the dependence between the load and the
following instruction (and) goes backward in time,
this hazard cannot be solved by forwarding.
Hence, this combination must result in a stall by
the hazard detection unit.

Hence, in addition to a forwarding unit, we need a hazard detection unit.
It operates during the ID stage so that it can insert the stall between the load
and its use. Checking for load instructions, the control for the hazard
detection unit is this single condition:
if (ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt)))
 stall the pipeline
The first line tests to see if the instruction is a load: the only instruction

that reads data memory is a load. The next two lines check to see if the
destination register field of the load in the EX stage matches either source
register of the instruction in the ID stage. If the condition holds, the

instruction stalls one clock cycle. After this 1-cycle stall, the forwarding
logic can handle the dependence and execution proceeds. (If there were no
forwarding, then the instructions in Figure 4.58 would need another stall
cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF
stage must also be stalled; otherwise, we would lose the fetched instruction.
Preventing these two instructions from making progress is accomplished
simply by preventing the PC register and the IF/ID pipeline register from
changing. Provided these registers are preserved, the instruction in the IF
stage will continue to be read using the same PC, and the registers in the ID
stage will continue to be read using the same instruction fields in the IF/ID
pipeline register. Returning to our favorite analogy, it’s as if you restart the
washer with the same clothes and let the dryer continue tumbling empty. Of
course, like the dryer, the back half of the pipeline starting with the EX
stage must be doing something; what it is doing is executing instructions
that have no effect: nops.

nop
An instruction that does no operation to change state.

How can we insert these nops, which act like bubbles, into the pipeline?
In Figure 4.49, we see that deasserting all nine control signals (setting them
to 0) in the EX, MEM, and WB stages will create a “do nothing” or nop
instruction. By identifying the hazard in the ID stage, we can insert a bubble
into the pipeline by changing the EX, MEM, and WB control fields of the
ID/EX pipeline register to 0. These benign control values are percolated
forward at each clock cycle with the proper effect: no registers or memories
are written if the control values are all 0.

Figure 4.59 shows what really happens in the hardware: the pipeline
execution slot associated with the AND instruction is turned into a nop and
all instructions beginning with the AND instruction are delayed one cycle.
Like an air bubble in a water pipe, a stall bubble delays everything behind it
and proceeds down the instruction pipe one stage each cycle until it exits at
the end. In this example, the hazard forces the AND and OR instructions to
repeat in clock cycle 4 what they did in clock cycle 3: AND reads registers

and decodes, and OR is refetched from instruction memory. Such repeated
work is what a stall looks like, but its effect is to stretch the time of the AND
and OR instructions and delay the fetch of the add instruction.

FIGURE 4.59 The way stalls are really inserted
into the pipeline.
A bubble is inserted beginning in clock cycle 4, by
changing the and instruction to a nop. Note that
the and instruction is really fetched and decoded
in clock cycles 2 and 3, but its EX stage is
delayed until clock cycle 5 (versus the unstalled
position in clock cycle 4). Likewise the OR
instruction is fetched in clock cycle 3, but its ID
stage is delayed until clock cycle 5 (versus the
unstalled clock cycle 4 position). After insertion of
the bubble, all the dependences go forward in
time and no further hazards occur.

Figure 4.60 highlights the pipeline connections for both the hazard
detection unit and the forwarding unit. As before, the forwarding unit

controls the ALU multiplexors to replace the value from a general-purpose
register with the value from the proper pipeline register. The hazard
detection unit controls the writing of the PC and IF/ID registers plus the
multiplexor that chooses between the real control values and all 0s. The
hazard detection unit stalls and deasserts the control fields if the load-use

hazard test above is true. Section 4.14 gives an example of MIPS
code with hazards that causes stalling, illustrated using single-clock
pipeline diagrams, if you would like to see more details.

The BIG Picture
Although the compiler generally relies upon the hardware to resolve
hazards and thereby ensure correct execution, the compiler must
understand the pipeline to achieve the best performance. Otherwise,
unexpected stalls will reduce the performance of the compiled code.

Elaboration
Regarding the remark earlier about setting control lines to 0 to avoid
writing registers or memory: only the signals RegWrite and MemWrite
need be 0, while the other control signals can be don’t cares.

FIGURE 4.60 Pipelined control overview,
showing the two multiplexors for forwarding,
the hazard detection unit, and the forwarding
unit.
Although the ID and EX stages have been
simplified—the sign-extended immediate and
branch logic are missing—this drawing gives the
essence of the forwarding hardware
requirements.

4.9 Control Hazards
There are a thousand hacking at the branches of evil to one who is
striking at the root.

Henry David Thoreau, Walden, 1854

Thus far, we have limited our concern to hazards involving arithmetic
operations and data transfers. However, as we saw in Section 4.6, there are
also pipeline hazards involving branches. Figure 4.61 shows a sequence of
instructions and indicates when the branch would occur in this pipeline. An

instruction must be fetched at every clock cycle to sustain the pipeline, yet
in our design the decision about whether to branch doesn’t occur until the
MEM pipeline stage. As mentioned in Section 4.6, this delay in determining
the proper instruction to fetch is called a control hazard or branch hazard,
in contrast to the data hazards we have just examined.

FIGURE 4.61 The impact of the pipeline on the
branch instruction.
The numbers to the left of the instruction (40, 44,
…) are the addresses of the instructions. Since
the branch instruction decides whether to branch
in the MEM stage—clock cycle 4 for the beq
instruction above—the three sequential
instructions that follow the branch will be fetched
and begin execution. Without intervention, those
three following instructions will begin execution
before beq branches to lw at location 72. (Figure
4.31 assumed extra hardware to reduce the
control hazard to one clock cycle; this figure uses
the nonoptimized datapath.)

This section on control hazards is shorter than the previous sections on
data hazards. The reasons are that control hazards are relatively simple to
understand, they occur less frequently than data hazards, and there is
nothing as effective against control hazards as forwarding is against data

hazards. Hence, we use simpler schemes. We look at two schemes for
resolving control hazards and one optimization to improve these schemes.

Assume Branch Not Taken
As we saw in Section 4.6, stalling until the branch is complete is too slow.
One improvement over branch stalling is to predict that the branch will not
be taken and thus continue execution down the sequential instruction
stream. If the branch is taken, the instructions that are being fetched and
decoded must be discarded. Execution continues at the branch target. If
branches are untaken half the time, and if it costs little to discard the
instructions, this optimization halves the cost of control hazards.

To discard instructions, we merely change the original control values to
0s, much as we did to stall for a load-use data hazard. The difference is that

we must also change the three instructions in the IF, ID, and EX stages
when the branch reaches the MEM stage; for load-use stalls, we just change
control to 0 in the ID stage and let them percolate through the pipeline.
Discarding instructions, then, means we must be able to flush instructions
in the IF, ID, and EX stages of the pipeline.

flush
To discard instructions in a pipeline, usually due to an unexpected event.

Reducing the Delay of Branches
One way to improve branch performance is to reduce the cost of the taken
branch. Thus far, we have assumed the next PC for a branch is selected in
the MEM stage, but if we move the branch execution earlier in the pipeline,
then fewer instructions need be flushed. The MIPS architecture was
designed to support fast single-cycle branches that could be pipelined with a
small branch penalty. The designers observed that many branches rely only
on simple tests (equality or sign, for example) and that such tests do not
require a full ALU operation but can be done with at most a few gates.
When a more complex branch decision is required, a separate instruction
that uses an ALU to perform a comparison is required—a situation that is
similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier:
computing the branch target address and evaluating the branch decision.
The easy part of this change is to move up the branch address calculation.
We already have the PC value and the immediate field in the IF/ID pipeline
register, so we just move the branch adder from the EX stage to the ID
stage; of course, the branch target address calculation will be performed for
all instructions, but only used when needed.

The harder part is the branch decision itself. For branch equal, we would
compare the two registers read during the ID stage to see if they are equal.
Equality can be tested by first exclusive ORing their respective bits and
then ORing all the results. (A zero output of the OR gate means the two
registers are equal.) Moving the branch test to the ID stage implies
additional forwarding and hazard detection hardware, since a branch

dependent on a result still in the pipeline must still work properly with this
optimization. For example, to implement branch on equal (and its inverse),
we will need to forward results to the equality test logic that operates during
ID. There are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass
to the equality unit is needed, and complete the equality
comparison so that if the instruction is a branch, we can set the PC
to the branch target address. Forwarding for the operands of
branches was formerly handled by the ALU forwarding logic, but
the introduction of the equality test unit in ID will require new
forwarding logic. Note that the bypassed source operands of a
branch can come from either the ALU/MEM or MEM/WB pipeline
latches.

2. Because the values in a branch comparison are needed during ID but
may be produced later in time, it is possible that a data hazard can
occur and a stall will be needed. For example, if an ALU
instruction immediately preceding a branch produces one of the
operands for the comparison in the branch, a stall will be required,
since the EX stage for the ALU instruction will occur after the ID
cycle of the branch. By extension, if a load is immediately followed
by a conditional branch that is on the load result, two stall cycles
will be needed, as the result from the load appears at the end of the
MEM cycle but is needed at the beginning of ID for the branch.

Despite these difficulties, moving the branch execution to the ID stage is
an improvement, because it reduces the penalty of a branch to only one
instruction if the branch is taken, namely, the one currently being fetched.
The exercises explore the details of implementing the forwarding path and
detecting the hazard.

To flush instructions in the IF stage, we add a control line, called
IF.Flush, that zeros the instruction field of the IF/ID pipeline register.
Clearing the register transforms the fetched instruction into a nop, an
instruction that has no action and changes no state.

Pipelined Branch

Example
Show what happens when the branch is taken in this instruction
sequence, assuming the pipeline is optimized for branches that are not
taken and that we moved the branch execution to the ID stage:

Answer
Figure 4.62 shows what happens when a branch is taken. Unlike Figure
4.61, there is only one pipeline bubble on a taken branch.

FIGURE 4.62 The ID stage of clock cycle 3
determines that a branch must be taken, so
it selects 72 as the next PC address and
zeros the instruction fetched for the next
clock cycle.
Clock cycle 4 shows the instruction at location
72 being fetched and the single bubble or nop
instruction in the pipeline as a result of the

taken branch. (Since the nop is really sll $0, $0,
0, it’s arguable whether or not the ID stage in
clock 4 should be highlighted.)

Dynamic Branch Prediction
Assuming a branch is not taken is one simple form of branch prediction. In
that case, we predict that branches are untaken, flushing the pipeline when
we are wrong. For the simple five-stage pipeline, such an approach,
possibly coupled with compiler-based prediction, is probably adequate.
With deeper pipelines, the branch penalty increases when measured in clock
cycles. Similarly, with multiple issue (see Section 4.11), the branch penalty
increases in terms of instructions lost. This combination means that in an
aggressive pipeline, a simple static prediction scheme will probably waste
too much performance. As we mentioned in Section 4.6, with more
hardware it is possible to try to predict branch behavior during program
execution.

One approach is to look up the address of the instruction to see if a
branch was taken the last time this instruction was executed, and, if so, to
begin fetching new instructions from the same place as the last time. This
technique is called dynamic branch prediction.

dynamic branch prediction
Prediction of branches at runtime using runtime information.

One implementation of that approach is a branch prediction buffer or
branch history table. A branch prediction buffer is a small memory
indexed by the lower portion of the address of the branch instruction. The
memory contains a bit that says whether the branch was recently taken or
not.

branch prediction buffer

Also called branch history table. A small memory that is indexed by
the lower portion of the address of the branch instruction and that
contains one or more bits indicating whether the branch was recently
taken or not.

This is the simplest sort of buffer; we don’t know, in fact, if the
prediction is the right one—it may have been put there by another branch
that has the same low-order address bits. However, this doesn’t affect
correctness. Prediction is just a hint that we hope is accurate, so fetching
begins in the predicted direction. If the hint turns out to be wrong, the
incorrectly predicted instructions are deleted, the prediction bit is inverted
and stored back, and the proper sequence is fetched and executed.

This simple 1-bit prediction scheme has a performance shortcoming:
even if a branch is almost always taken, we can predict incorrectly twice,
rather than once, when it is not taken. The following example shows this
dilemma.

Loops and Prediction

Example
Consider a loop branch that branches nine times in a row, then is not
taken once. What is the prediction accuracy for this branch, assuming the
prediction bit for this branch remains in the prediction buffer?

Answer
The steady-state prediction behavior will mispredict on the first and last
loop iterations. Mispredicting the last iteration is inevitable since the
prediction bit will indicate taken, as the branch has been taken nine times
in a row at that point. The misprediction on the first iteration happens
because the bit is flipped on prior execution of the last iteration of the
loop, since the branch was not taken on that exiting iteration. Thus, the
prediction accuracy for this branch that is taken 90% of the time is only
80% (two incorrect predictions and eight correct ones).

Ideally, the accuracy of the predictor would match the taken branch
frequency for these highly regular branches. To remedy this weakness, we

can use more prediction bits. In a 2-bit scheme, a prediction must be wrong
twice before it is changed. Figure 4.63 shows the finite-state machine for a
2-bit prediction scheme.

FIGURE 4.63 The states in a 2-bit prediction
scheme.
By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many
branches do—will be mispredicted only once.
The 2 bits are used to encode the four states in
the system. The 2-bit scheme is a general
instance of a counter-based predictor, which is
incremented when the prediction is accurate and
decremented otherwise, and uses the mid-point
of its range as the division between taken and not
taken.

A branch prediction buffer can be implemented as a small, special buffer
accessed with the instruction address during the IF pipe stage. If the
instruction is predicted as taken, fetching begins from the target as soon as
the PC is known; as mentioned on page 330, it can be as early as the ID

stage. Otherwise, sequential fetching and executing continue. If the
prediction turns out to be wrong, the prediction bits are changed as Figure
4.63 shows.

Elaboration
As we described in Section 4.6, in a five-stage pipeline we can make the
control hazard a feature by redefining the branch. A delayed branch
always executes the following instruction, but the second instruction
following the branch will be affected by the branch.

Compilers and assemblers try to place an instruction that always
executes after the branch in the branch delay slot. The job of the
software is to make the successor instructions valid and useful. Figure
4.64 shows the three ways in which the branch delay slot can be
scheduled.

branch delay slot
The slot directly after a delayed branch instruction, which in the MIPS
architecture is filled by an instruction that does not affect the branch.

FIGURE 4.64 Scheduling the branch delay slot.
The top box in each pair shows the code before
scheduling; the bottom box shows the
scheduled code. In (a), the delay slot is
scheduled with an independent instruction from
before the branch. This is the best choice.
Strategies (b) and (c) are used when (a) is not
possible. In the code sequences for (b) and (c),
the use of $s1 in the branch condition prevents
the add instruction (whose destination is $s1)
from being moved into the branch delay slot. In
(b) the branch delay slot is scheduled from the
target of the branch; usually the target
instruction will need to be copied because it can
be reached by another path. Strategy (b) is
preferred when the branch is taken with high
probability, such as a loop branch. Finally, the
branch may be scheduled from the not-taken
fall-through as in (c). To make this optimization

legal for (b) or (c), it must be OK to execute the
sub instruction when the branch goes in the
unexpected direction. By “OK” we mean that
the work is wasted, but the program will still
execute correctly. This is the case, for example,
if $t4 were an unused temporary register when
the branch goes in the unexpected direction.

The limitations on delayed branch scheduling arise from (1) the
restrictions on the instructions that are scheduled into the delay slots and
(2) our ability to predict at compile time whether a branch is likely to be
taken or not.

Delayed branching was a simple and effective solution for a five-stage
pipeline issuing one instruction each clock cycle. As processors go to
both longer pipelines and issuing multiple instructions per clock cycle
(see Section 4.11), the branch delay becomes longer, and a single delay
slot is insufficient. Hence, delayed branching has lost popularity
compared to more expensive but more flexible dynamic approaches.
Simultaneously, the growth in available transistors per chip has due to
Moore’s Law made dynamic prediction relatively cheaper. There are
more transistors in the branch predictor of modern microprocessors than
there were in the whole first MIPS chips!

Elaboration
A branch predictor tells us whether or not a branch is taken, but still
requires the calculation of the branch target. In the five-stage pipeline,
this calculation takes one cycle, meaning that taken branches will have a
1-cycle penalty. Delayed branches are one approach to eliminate that
penalty. Another approach is to use a cache to hold the destination
program counter or destination instruction using a branch target
buffer.

branch target buffer
A structure that caches the destination PC or destination instruction for
a branch. It is usually organized as a cache with tags, making it more

costly than a simple prediction buffer.

The 2-bit dynamic prediction scheme uses only information about a
particular branch. Researchers noticed that using information about both
a local branch, and the global behavior of recently executed branches
together yields greater prediction accuracy for the same number of
prediction bits. Such predictors are called correlating predictors. A
typical correlating predictor might have two 2-bit predictors for each
branch, with the choice between predictors made based on whether the
last executed branch was taken or not taken. Thus, the global branch
behavior can be thought of as adding additional index bits for the
prediction lookup.

correlating predictor
A branch predictor that combines local behavior of a particular branch
and global information about the behavior of some recent number of
executed branches.

A more recent innovation in branch prediction is the use of tournament
predictors. A tournament predictor uses multiple predictors, tracking,
for each branch, which predictor yields the best results. A typical
tournament predictor might contain two predictions for each branch
index: one based on local information and one based on global branch
behavior. A selector would choose which predictor to use for any given
prediction. The selector can operate similarly to a 1- or 2-bit predictor,
favoring whichever of the two predictors has been more accurate. Some
recent microprocessors use such elaborate predictors.

tournament branch predictor
A branch predictor with multiple predictions for each branch and a
selection mechanism that chooses which predictor to enable for a given
branch.

Elaboration
One way to reduce the number of conditional branches is to add
conditional move instructions. Instead of changing the PC with a
conditional branch, the instruction conditionally changes the destination
register of the move. If the condition fails, the move acts as a nop. For
example, one version of the MIPS instruction set architecture has two
new instructions called movn (move if not zero) and movz (move if zero).
Thus, movn$8, $11, $4 copies the contents of register 11 into register 8,
provided that the value in register 4 is nonzero; otherwise, it does
nothing.

The ARMv7 instruction set has a condition field in most instructions.
Hence, ARM programs could have fewer conditional branches than in
MIPS programs.

Pipeline Summary
We started in the laundry room, showing principles of pipelining in an
everyday setting. Using that analogy as a guide, we explained instruction
pipelining step-by-step, starting with the single-cycle datapath and then
adding pipeline registers, forwarding paths, data hazard detection, branch
prediction, and flushing instructions on exceptions. Figure 4.65 shows the
final evolved datapath and control. We now are ready for yet another
control hazard: the sticky issue of exceptions.

Check Yourself
Consider three branch prediction schemes: predict not taken, predict
taken, and dynamic prediction. Assume that they all have zero penalty
when they predict correctly and two cycles when they are wrong.
Assume that the average predict accuracy of the dynamic predictor is
90%. Which predictor is the best choice for the following branches?

1. A branch that is taken with 5% frequency
2. A branch that is taken with 95% frequency
3. A branch that is taken with 70% frequency

FIGURE 4.65 The final datapath and control for
this chapter.
Note that this is a stylized figure rather than a
detailed datapath, so it’s missing the ALUsrc Mux
from Figure 4.57 and the multiplexor controls
from Figure 4.51.

4.10 Exceptions
To make a computer with automatic program-interruption facilities
behave[sequentially] was not an easy matter, because the number of
instructions in various stages of processing when an interrupt signal
occurs may be large.

Fred Brooks, Jr., Planning a Computer System: Project Stretch, 1962

Control is the most challenging aspect of processor design: it is both the
hardest part to get right and the hardest part to make fast. One of the hardest
parts of control is implementing exceptions and interrupts—events
other than branches or jumps that change the normal flow of instruction
execution. They were initially created to handle unexpected events from

within the processor, like arithmetic overflow. The same basic mechanism
was extended for I/O devices to communicate with the processor, as we will
see in Chapter 5.

exception
Also called interrupt. An unscheduled event that disrupts program
execution; used to detect overflow.

interrupt
An exception that comes from outside of the processor. (Some
architectures use the term interrupt for all exceptions.)

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of
events. For example, the Intel x86 uses interrupt. We follow the MIPS
convention, using the term exception to refer to any unexpected change in
control flow without distinguishing whether the cause is internal or
external; we use the term interrupt only when the event is externally
caused. Here are five examples showing whether the situation is internally
generated by the processor or externally generated:

Type of event From
where?

MIPS
terminology

I/O device request External Interrupt

Invoke the operating system from user
program

Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or
interrupt

Many of the requirements to support exceptions come from the specific
situation that causes an exception to occur. Accordingly, we will return to
this topic in Chapter 5, when we will better understand the motivation for
additional capabilities in the exception mechanism. In this section, we deal
with the control implementation for detecting two types of exceptions that
arise from the portions of the instruction set and implementation that we
have already discussed.

Detecting exceptional conditions and taking the appropriate action is
often on the critical timing path of a processor, which determines the clock
cycle time and thus performance. Without proper attention to exceptions
during design of the control unit, attempts to add exceptions to a
complicated implementation can significantly reduce performance, as well
as complicate the task of getting the design correct.

How Exceptions Are Handled in the MIPS
Architecture
The two types of exceptions that our current implementation can generate
are execution of an undefined instruction and an arithmetic overflow. We’ll
use arithmetic overflow in the instruction add $1, $2, $1 as the example
exception in the next few pages. The basic action that the processor must
perform when an exception occurs is to save the address of the offending
instruction in the exception program counter (EPC) and then transfer
control to the operating system at some specified address.

The operating system can then take the appropriate action, which may
involve providing some service to the user program, taking some predefined
action in response to an overflow, or stopping the execution of the program
and reporting an error. After performing whatever action is required
because of the exception, the operating system can terminate the program or
may continue its execution, using the EPC to determine where to restart the
execution of the program. In Chapter 5, we will look more closely at the
issue of restarting the execution.

For the operating system to handle the exception, it must know the reason
for the exception, in addition to the instruction that caused it. There are two
main methods used to communicate the reason for an exception. The

method used in the MIPS architecture is to include a status register (called
the Cause register), which holds a field that indicates the reason for the
exception.

A second method, is to use vectored interrupts. In a vectored
interrupt, the address to which control is transferred is determined by the
cause of the exception. For example, to accommodate the two exception
types listed above, we might define the following two exception vector
addresses:

Exception type Exception vector address (in hex)
Undefined instruction 8000 0000hex

Arithmetic overflow 8000 0180hex

vectored interrupt
An interrupt for which the address to which control is transferred is
determined by the cause of the exception.

The operating system knows the reason for the exception by the address
at which it is initiated. The addresses are separated by 32 bytes or eight
instructions, and the operating system must record the reason for the
exception and may perform some limited processing in this sequence. When
the exception is not vectored, a single entry point for all exceptions can be
used, and the operating system decodes the status register to find the cause.

We can perform the processing required for exceptions by adding a few
extra registers and control signals to our basic implementation and by
slightly extending control. Let’s assume that we are implementing the
exception system used in the MIPS architecture, with the single entry point
being the address 8000 0180hex. (Implementing vectored exceptions is no
more difficult.) We will need to add two additional registers to our current
MIPS implementation:

■ EPC: A 32-bit register used to hold the address of the affected
instruction. (Such a register is needed even when exceptions are

vectored.)
■ Cause: A register used to record the cause of the exception. In the
MIPS architecture, this register is 32 bits, although some bits are
currently unused. Assume there is a five-bit field that encodes the two
possible exception sources mentioned above, with 10 representing an
undefined instruction and 12 representing arithmetic overflow.

Exceptions in a Pipelined Implementation
A pipelined implementation treats exceptions as another form of control
hazard. For example, suppose there is an arithmetic overflow in an add
instruction. Just as we did for the taken branch in the previous section, we
must flush the instructions that follow the add instruction from the pipeline
and begin fetching instructions from the new address. We will use the same
mechanism we used for taken branches, but this time the exception causes
the deasserting of control lines.

When we dealt with branch mispredict, we saw how to flush the
instruction in the IF stage by turning it into a nop. To flush instructions in
the ID stage, we use the multiplexor already in the ID stage that zeros
control signals for stalls. A new control signal, called ID.Flush, is ORed
with the stall signal from the hazard detection unit to flush during ID. To
flush the instruction in the EX phase, we use a new signal called EX.Flush
to cause new multiplexors to zero the control lines. To start fetching
instructions from location 8000 0180hex, which is the MIPS exception
address, we simply add an additional input to the PC multiplexor that sends
8000 0180hex to the PC. Figure 4.66 shows these changes.

FIGURE 4.66 The datapath with controls to
handle exceptions.
The key additions include a new input with the
value 8000 0180hex in the multiplexor that
supplies the new PC value; a Cause register to
record the cause of the exception; and an
Exception PC register to save the address of the
instruction that caused the exception. The 8000
0180hex input to the multiplexor is the initial
address to begin fetching instructions in the event
of an exception. Although not shown, the ALU
overflow signal is an input to the control unit.

This example points out a problem with exceptions: if we do not stop
execution in the middle of the instruction, the programmer will not be able
to see the original value of register $1 that helped cause the overflow
because it will be clobbered as the Destination register of the add
instruction. Because of careful planning, the overflow exception is detected
during the EX stage; hence, we can use the EX.Flush signal to prevent the
instruction in the EX stage from writing its result in the WB stage. Many
exceptions require that we eventually complete the instruction that caused
the exception as if it executed normally. The easiest way to do this is to

flush the instruction and restart it from the beginning after the exception is
handled.

The final step is to save the address of the offending instruction in the
exception program counter (EPC). In reality, we save the address +4, so the
exception handling routine must first subtract 4 from the saved value.
Figure 4.66 shows a stylized version of the datapath, including the branch
hardware and necessary accommodations to handle exceptions.

Exception in a Pipelined Computer

Example
Given this instruction sequence,

40hexsub $11, $2, $4

44hexand $12, $2, $5

48hexor $13, $2, $6

4Chexadd $1, $2, $1

50hexslt $15, $6, $7

54hexlw $16, 50($7)

. . .
assume the instructions to be invoked on an exception begin like this:
80000180hex sw $26, 1000($0)

80000184hex sw $27, 1004($0)

. . .
Show what happens in the pipeline if an overflow exception occurs in

the add instruction.

Answer
Figure 4.67 shows the events, starting with the add instruction in the EX
stage. The overflow is detected during that phase, and 8000 0180hex is
forced into the PC. Clock cycle 7 shows that the add and following
instructions are flushed, and the first instruction of the exception code is
fetched. Note that the address of the instruction following the add is
saved: 4Chex+4 = 50hex.

FIGURE 4.67 The result of an exception due to
arithmetic overflow in the add instruction.
The overflow is detected during the EX stage of
clock 6, saving the address following the add in
the EPC register (4C + 4 = 50hex). Overflow
causes all the Flush signals to be set near the
end of this clock cycle, deasserting control
values (setting them to 0) for the add. Clock
cycle 7 shows the instructions converted to
bubbles in the pipeline plus the fetching of the

first instruction of the exception routine—sw
$25,1000($0)—from instruction location 8000
0180hex. Note that the AND and OR instructions,
which are prior to the add, still complete.
Although not shown, the ALU overflow signal is
an input to the control unit.

We mentioned five examples of exceptions on page 338, and we will see
others in Chapter 5. With five instructions active in any clock cycle, the
challenge is to associate an exception with the appropriate instruction.
Moreover, multiple exceptions can occur simultaneously in a single clock
cycle. The solution is to prioritize the exceptions so that it is easy to
determine which is serviced first. In most MIPS implementations, the
hardware sorts exceptions so that the earliest instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a
specific instruction, so the implementation has some flexibility as to when
to interrupt the pipeline. Hence, the mechanism used for other exceptions
works just fine.

The EPC captures the address of the interrupted instructions, and the
MIPS Cause register records all possible exceptions in a clock cycle, so the
exception software must match the exception to the instruction. An
important clue is knowing in which pipeline stage a type of exception can
occur. For example, an undefined instruction is discovered in the ID stage,
and invoking the operating system occurs in the EX stage. Exceptions are
collected in the Cause register in a pending exception field so that the
hardware can interrupt based on later exceptions, once the earliest one has
been serviced.

Hardware/Software Interface
The hardware and the operating system must work in conjunction so that
exceptions behave as you would expect. The hardware contract is
normally to stop the offending instruction in midstream, let all prior
instructions complete, flush all following instructions, set a register to
show the cause of the exception, save the address of the offending

instruction, and then jump to a prearranged address. The operating
system contract is to look at the cause of the exception and act
appropriately. For an undefined instruction, hardware failure, or
arithmetic overflow exception, the operating system normally kills the
program and returns an indicator of the reason. For an I/O device request
or an operating system service call, the operating system saves the state
of the program, performs the desired task, and, at some point in the
future, restores the program to continue execution. In the case of I/O
device requests, we may often choose to run another task before
resuming the task that requested the I/O, since that task may often not be
able to proceed until the I/O is complete. Exceptions are why the ability
to save and restore the state of any task is critical. One of the most
important and frequent uses of exceptions is handling page faults and
TLB exceptions; Chapter 5 describes these exceptions and their handling
in more detail.

imprecise interrupt
Also called imprecise exception. Interrupts or exceptions in pipelined
computers that are not associated with the exact instruction that was the
cause of the interrupt or exception.

Elaboration
The difficulty of always associating the correct exception with the correct
instruction in pipelined computers has led some computer designers to
relax this requirement in noncritical cases. Such processors are said to
have imprecise interrupts or imprecise exceptions. In the
example above, PC would normally have 58hex at the start of the clock
cycle after the exception is detected, even though the offending
instruction is at address 4Chex. A processor with imprecise exceptions
might put 58hex into EPC and leave it up to the operating system to
determine which instruction caused the problem. MIPS and the vast
majority of computers today support precise interrupts or precise
exceptions. (One reason is to support virtual memory, which we shall
see in Chapter 5.)

precise interrupt
Also called precise exception. An interrupt or exception that is
always associated with the correct instruction in pipelined computers.

Elaboration
Although MIPS uses the exception entry address 8000 0180hex for almost
all exceptions, it uses the address 8000 0000hex to improve performance
of the exception handler for TLB-miss exceptions (see Chapter 5).

Check Yourself
Which exception should be recognized first in this sequence?

1. add $1, $2, $1 # arithmetic overflow
2. XXX $1, $2, $1 # undefined instruction
3. sub $1, $2, $1 # hardware error

4.11 Parallelism via Instructions
Be forewarned: this section is a brief overview of fascinating but advanced
topics. If you want to learn more details, you should consult our more
advanced book, Computer Architecture: A Quantitative Approach, sixth
edition, where the material covered in these 13 pages is expanded to almost
200 pages (including Appendices)!
Pipelining exploits the potential parallelism among instructions. This

parallelism is called instruction-level parallelism (ILP). There are two
primary methods for increasing the potential amount of instruction-level
parallelism. The first is increasing the depth of the pipeline to overlap more
instructions. Using our laundry analogy and assuming that the washer cycle
was longer than the others were, we could divide our washer into three
machines that perform the wash, rinse, and spin steps of a traditional
washer. We would then move from a four-stage to a six-stage pipeline. To
get the full speed-up, we need to rebalance the remaining steps so they have
the same duration, in processors or in laundry. The amount of parallelism

being exploited is higher, since there are more operations being overlapped.
Performance is potentially greater since the clock cycle can be shorter.

instruction-level parallelism
The parallelism among instructions.

multiple issue
A scheme whereby multiple instructions are launched in one clock cycle.

Another approach is to replicate the internal components of the computer
so that it can launch multiple instructions in every pipeline stage. The
general name for this technique is multiple issue. A multiple-issue
laundry would replace our household washer and dryer with, say, three
washers and three dryers. You would also have to recruit more assistants to
fold and put away three times as much laundry in the same amount of time.
The downside is the extra work to keep all the machines busy and
transferring the loads to the next pipeline stage.

Launching multiple instructions per stage allows the instruction
execution rate to exceed the clock rate or, stated alternatively, the CPI to be
less than 1. As mentioned in Chapter 1, it is sometimes useful to flip the
metric and use IPC, or instructions per clock cycle. Hence, a 4 GHz four-
way multiple-issue microprocessor can execute a peak rate of 16 billion

instructions per second and have a best-case CPI of 0.25, or an IPC of 4.
Assuming a five-stage pipeline, such a processor would have 20
instructions in execution at any given time. Today’s high-end
microprocessors attempt to issue from three to six instructions in every
clock cycle. Even moderate designs will aim at an IPC of 2. There are
typically, however, many constraints on what types of instructions may be
executed simultaneously, and what happens when dependences arise.

There are two major ways to implement a multiple-issue processor, with
the major difference being the division of work between the compiler and
the hardware. Because the division of work dictates whether decisions are
being made statically (that is, at compile time) or dynamically (that is,
during execution), the approaches are sometimes called static multiple
issue and dynamic multiple issue. As we will see, both approaches
have other, more commonly used names, which may be less precise or more
restrictive.

static multiple issue
An approach to implementing a multiple-issue processor where many
decisions are made by the compiler before execution.

dynamic multiple issue
An approach to implementing a multiple-issue processor where many
decisions are made during execution by the processor.

There are two primary and distinct responsibilities that must be dealt with
in a multiple-issue pipeline:

1. Packaging instructions into issue slots: how does the processor
determine how many instructions and which instructions can be
issued in a given clock cycle? In most static issue processors, this
process is at least partially handled by the compiler; in dynamic
issue designs, it is normally dealt with at runtime by the processor,
although the compiler will often have already tried to help improve
the issue rate by placing the instructions in a beneficial order.

2. Dealing with data and control hazards: in static issue processors, the
compiler handles some or all of the consequences of data and
control hazards statically. In contrast, most dynamic issue
processors attempt to alleviate at least some classes of hazards
using hardware techniques operating at execution time.

issue slots
The positions from which instructions could issue in a given clock cycle;
by analogy, these correspond to positions at the starting blocks for a
sprint.

Although we describe these as distinct approaches, in reality one
approach often borrows techniques from the other, and neither approach can
claim to be perfectly pure.

The Concept of Speculation

speculation
An approach whereby the compiler or processor guesses the outcome of
an instruction to remove it as a dependence in executing other
instructions.

One of the most important methods for finding and exploiting more ILP
is speculation. Based on the great idea of prediction, speculation is an
approach that allows the compiler or the processor to “guess” about the
properties of an instruction, so as to enable execution to begin for other
instructions that may depend on the speculated instruction. For example, we
might speculate on the outcome of a branch, so that instructions after the
branch could be executed earlier. Another example is that we might
speculate that a store that precedes a load does not refer to the same
address, which would allow the load to be executed before the store. The
difficulty with speculation is that it may be wrong. So, any speculation

mechanism must include both a method to check if the guess was right and
a method to unroll or back out the effects of the instructions that were
executed speculatively. The implementation of this back-out capability adds
complexity.

Speculation may be done in the compiler or by the hardware. For
example, the compiler can use speculation to reorder instructions, moving
an instruction across a branch or a load across a store. The processor
hardware can perform the same transformation at runtime using techniques
we discuss later in this section.

The recovery mechanisms used for incorrect speculation are rather
different. In the case of speculation in software, the compiler usually inserts
additional instructions that check the accuracy of the speculation and
provide a fix-up routine to use when the speculation is incorrect. In
hardware speculation, the processor usually buffers the speculative results
until it knows they are no longer speculative. If the speculation is correct,
the instructions are completed by allowing the contents of the buffers to be
written to the registers or memory. If the speculation is incorrect, the
hardware flushes the buffers and re-executes the correct instruction
sequence.

Speculation introduces one other possible problem: speculating on
certain instructions may introduce exceptions that were formerly not
present. For example, suppose a load instruction is moved in a speculative
manner, but the address it uses is not legal when the speculation is incorrect.
The result would be an exception that should not have occurred. The
problem is complicated by the fact that if the load instruction were not
speculative, then the exception must occur! In compiler-based speculation,
such problems are avoided by adding special speculation support that
allows such exceptions to be ignored until it is clear that they really should
occur. In hardware-based speculation, exceptions are simply buffered until
it is clear that the instruction causing them is no longer speculative and is
ready to complete; at that point the exception is raised, and nor-mal
exception handling proceeds.

Since speculation can improve performance when done properly and
decrease performance when done carelessly, significant effort goes into
deciding when it is appropriate to speculate. Later in this section, we will
examine both static and dynamic techniques for speculation.

Static Multiple Issue

issue packet
The set of instructions that issues together in one clock cycle; the packet
may be determined statically by the compiler or dynamically by the
processor.

Static multiple-issue processors all use the compiler to assist with
packaging instructions and handling hazards. In a static issue processor, you
can think of the set of instructions issued in a given clock cycle, which is
called an issue packet, as one large instruction with multiple operations.
This view is more than an analogy. Since a static multiple-issue processor
usually restricts what mix of instructions can be initiated in a given clock
cycle, it is useful to think of the issue packet as a single instruction allowing
several operations in certain predefined fields. This view led to the original
name for this approach: Very Long Instruction Word (VLIW).

Very Long Instruction Word (VLIW)
A style of instruction set architecture that launches many operations that
are defined to be independent in a single wide instruction, typically with
many separate opcode fields.

Most static issue processors also rely on the compiler to take on some
responsibility for handling data and control hazards. The compiler’s
responsibilities may include static branch prediction and code scheduling to
reduce or prevent all hazards. Let’s look at a simple static issue version of a
MIPS processor, before we describe the use of these techniques in more
aggressive processors.

An Example: Static Multiple Issue with the MIPS ISA
To give a flavor of static multiple issue, we consider a simple two-issue
MIPS processor, where one of the instructions can be an integer ALU
operation or branch and the other can be a load or store. Such a design is
like that used in some embedded MIPS processors. Issuing two instructions

per cycle will require fetching and decoding 64 bits of instructions. In many
static multiple-issue processors, and essentially all VLIW processors, the
layout of simultaneously issuing instructions is restricted to simplify the
decoding and instruction issue. Hence, we will require that the instructions
be paired and aligned on a 64-bit boundary, with the ALU or branch portion
appearing first. Furthermore, if one instruction of the pair cannot be used,
we require that it be replaced with a nop. Thus, the instructions always issue
in pairs, possibly with a nop in one slot. Figure 4.68 shows how the
instructions look as they go into the pipeline in pairs.

FIGURE 4.68 Static two-issue pipeline in
operation.
The ALU and data transfer instructions are issued
at the same time. Here we have assumed the
same five-stage structure as used for the single-
issue pipeline. Although this is not strictly
necessary, it does have some advantages. In
particular, keeping the register writes at the end
of the pipeline simplifies the handling of
exceptions and the maintenance of a precise
exception model, which become more difficult in
multiple-issue processors.

Static multiple-issue processors vary in how they deal with potential data
and control hazards. In some designs, the compiler takes full responsibility
for removing all hazards, scheduling the code and inserting no-ops so that
the code executes without any need for hazard detection or hardware-

generated stalls. In others, the hardware detects data hazards and generates
stalls between two issue packets, while requiring that the compiler avoid all
dependences within an instruction pair. Even so, a hazard generally forces
the entire issue packet containing the dependent instruction to stall.
Whether the software must handle all hazards or only try to reduce the
fraction of hazards between separate issue packets, the appearance of
having a large single instruction with multiple operations is reinforced. We
will assume the second approach for this example.

To issue an ALU and a data transfer operation in parallel, the first need
for additional hardware—beyond the usual hazard detection and stall logic
—is extra ports in the register file (see Figure 4.69). In one clock cycle we
may need to read two registers for the ALU operation and two more for a
store, and also one write port for an ALU operation and one write port for a
load. Since the ALU is tied up for the ALU operation, we also need a
separate adder to calculate the effective address for data transfers. Without
these extra resources, our two-issue pipeline would be hindered by
structural hazards.

FIGURE 4.69 A static two-issue datapath.
The additions needed for double issue are
highlighted: another 32 bits from instruction
memory, two more read ports and one more write
port on the register file, and another ALU.
Assume the bottom ALU handles address
calculations for data transfers and the top ALU
handles everything else.

Clearly, this two-issue processor can improve performance by up to a
factor of 2. Doing so, however, requires that twice as many instructions be
overlapped in execution, and this additional overlap increases the relative
performance loss from data and control hazards. For example, in our simple
five-stage pipeline, loads have a use latency of one clock cycle, which
prevents one instruction from using the result without stalling. In the two-
issue, five-stage pipeline the result of a load instruction cannot be used on
the next clock cycle. This means that the next two instructions cannot use
the load result without stalling. Furthermore, ALU instructions that had no
use latency in the simple five-stage pipeline now have a one-instruction use
latency, since the results cannot be used in the paired load or store. To
effectively exploit the parallelism available in a multiple-issue processor,

more ambitious compiler or hardware scheduling techniques are needed,
and static multiple issue requires that the compiler take on this role.

use latency
Number of clock cycles between a load instruction and an instruction that
can use the result of the load without stalling the pipeline.

Simple Multiple-Issue Code Scheduling

Example
How would this loop be scheduled on a static two-issue pipeline for
MIPS?

Reorder the instructions to avoid as many pipeline stalls as possible.
Assume branches are predicted, so that control hazards are handled by
the hardware.

Answer
The first three instructions have data dependences, and so do the last two.
Figure 4.70 shows the best schedule for these instructions. Notice that
just one pair of instructions has both issue slots used. It takes four clocks
per loop iteration; at four clocks to execute five instructions, we get the
disappointing CPI of 0.8 versus the best case of 0.5., or an IPC of 1.25
versus 2.0. Notice that in computing CPI or IPC, we do not count any
nops executed as useful instructions. Doing so would improve CPI, but
not performance!

FIGURE 4.70 The scheduled code as it would
look on a two-issue MIPS pipeline.
The empty slots are no-ops.

An important compiler technique to get more performance from loops is
loop unrolling, where multiple copies of the loop body are made. After
unrolling, there is more ILP available by overlapping instructions from
different iterations.

loop unrolling
A technique to get more performance from loops that access arrays, in
which multiple copies of the loop body are made and instructions from
different iterations are scheduled together.

Loop Unrolling for Multiple-Issue Pipelines

Example
See how well loop unrolling and scheduling work in the example above.
For simplicity assume that the loop index is a multiple of four.

Answer
To significantly reduce the delays in the loop, we need to make four
copies of the loop body. After unrolling and eliminating the unnecessary
loop overhead instructions, the loop will contain four copies each of lw,
add, and sw, plus one addi and one bne. Figure 4.71 shows the unrolled
and scheduled code.

FIGURE 4.71 The unrolled and scheduled code
of Figure 4.70 as it would look on a static
two-issue MIPS pipeline.
The empty slots are no-ops. Since the first
instruction in the loop decrements $s1 by 16,
the addresses loaded are the original value of
$s1, then that address minus 4, minus 8, and
minus 12.

During the unrolling process, the compiler introduced additional
registers ($t1, $t2, $t3). The goal of this process, called register
renaming, is to eliminate dependences that are not true data
dependences, but could either lead to potential hazards or prevent the
compiler from flexibly scheduling the code. Consider how the unrolled
code would look using only $t0. There would be repeated instances of lw
$t0,0($$s1), addu $t0,$t0,$s2 followed by sw t0,4($s1), but these
sequences, despite using $t0, are actually completely independent—no
data values flow between one set of these instructions and the next set.
This case is what is called an antidependence or name
dependence, which is an ordering forced purely by the reuse of a
name, rather than a real data dependence that is also called a true
dependence.

register renaming
The renaming of registers by the compiler or hardware to remove
antidependences.

antidependence

Also called name dependence. An ordering forced by the reuse of a
name, typically a register, rather than by a true dependence that carries
a value between two instructions.

Renaming the registers during the unrolling process allows the
compiler to move these independent instructions subsequently so as to
better schedule the code. The renaming process eliminates the name
dependences, while preserving the true dependences.

Notice now that 12 of the 14 instructions in the loop execute as pairs.
It takes 8 clocks for 4 loop iterations, or 2 clocks per iteration, which
yields a CPI of 8/14 = 0.57 and an IPC of 1.75. Loop unrolling and
scheduling with dual issue gave us an improvement factor of almost 2,
partly from reducing the loop control instructions and partly from dual
issue execution. The cost of this performance improvement is using four
temporary registers rather than one, as well as a significant increase in
code size.

Dynamic Multiple-Issue Processors
Dynamic multiple-issue processors are also known as superscalar
processors, or simply superscalars. In the simplest superscalar processors,
instructions issue in order, and the processor decides whether zero, one, or
more instructions can issue in a given clock cycle. Obviously, achieving
good performance on such a processor still requires the compiler to try to
schedule instructions to move dependences apart and thereby improve the
instruction issue rate. Even with such compiler scheduling, there is an
important difference between this simple superscalar and a VLIW
processor: the code, whether scheduled or not, is guaranteed by the
hardware to execute correctly. Furthermore, compiled code will always run
correctly independent of the issue rate or pipeline structure of the processor.
In some VLIW designs, this has not been the case, and recompilation was
required when moving across different processor models; in other static
issue processors, code would run correctly across different
implementations, but often so poorly as to make compilation effectively
required.

superscalar
An advanced pipelining technique that enables the processor to execute
more than one instruction per clock cycle by selecting them during
execution.

Many superscalars extend the basic framework of dynamic issue
decisions to include dynamic pipeline scheduling. Dynamic pipeline
scheduling chooses which instructions to execute in a given clock cycle
while trying to avoid hazards and stalls. Let’s start with a simple example of
avoiding a data hazard. Consider the following code sequence:

dynamic pipeline scheduling
Hardware support for reordering the order of instruction execution so as
to avoid stalls.

Even though the sub instruction is ready to execute, it must wait for the
lw and addu to complete first, which might take many clock cycles if
memory is slow. (Chapter 5 explains cache misses, the reason that memory
accesses are sometimes very slow.) Dynamic pipeline scheduling allows
such hazards to be avoided either fully or partially.

Dynamic Pipeline Scheduling
Dynamic pipeline scheduling chooses which instructions to execute next,
possibly reordering them to avoid stalls. In such processors, the pipeline is
divided into three major units: an instruction fetch and issue unit, multiple
functional units (a dozen or more in high-end designs in 2020), and a
commit unit. Figure 4.72 shows the model. The first unit fetches
instructions, decodes them, and sends each instruction to a corresponding
functional unit for execution. Each functional unit has buffers, called
reservation stations, which hold the operands and the operation. (In the
next section, we will discusses an alternative to reservation stations used by
many recent processors.) As soon as the buffer contains all its operands and
the functional unit is ready to execute, the result is calculated. When the
result is completed, it is sent to any reservation stations waiting for this
particular result as well as to the commit unit, which buffers the result until
it is safe to put the result into the register file or, for a store, into memory.
The buffer in the commit unit, often called the reorder buffer, is also used
to supply operands, in much the same way as forwarding logic does in a

statically scheduled pipeline. Once a result is committed to the register file,
it can be fetched directly from there, just as in a normal pipeline.

commit unit
The unit in a dynamic or out-of-order execution pipeline that decides
when it is safe to release the result of an operation to programmer-visible
registers and memory.

reservation station
A buffer within a functional unit that holds the operands and the
operation.

reorder buffer
The buffer that holds results in a dynamically scheduled processor until it
is safe to store the results to memory or a register.

FIGURE 4.72 The three primary units of a
dynamically scheduled pipeline.
The final step of updating the state is also called
retirement or graduation.

The combination of buffering operands in the reservation stations and
results in the reorder buffer provides a form of register renaming, just like
that used by the compiler in our earlier loop-unrolling example on page
350. To see how this conceptually works, consider the following steps:

1. When an instruction issues, it is copied to a reservation station for
the appropriate functional unit. Any operands that are available in
the register file or reorder buffer are also immediately copied into
the reservation station. The instruction is buffered in the
reservation station until all the operands and the functional unit are
available. For the issuing instruction, the register copy of the
operand is no longer required, and if a write to that register
occurred, the value could be overwritten.

2. If an operand is not in the register file or reorder buffer, it must be
waiting to be produced by a functional unit. The name of the
functional unit that will produce the result is tracked. When that

unit eventually produces the result, it is copied directly into the
waiting reservation station from the functional unit bypassing the
registers.

These steps effectively use the reorder buffer and the reservation stations
to implement register renaming.

Conceptually, you can think of a dynamically scheduled pipeline as
analyzing the data flow structure of a program. The processor then executes
the instructions in some order that preserves the data flow order of the
program. This style of execution is called an out-of-order execution,
since the instructions can be executed in a different order than they were
fetched.

out-of-order execution
A situation in pipelined execution when an instruction blocked from
executing does not cause the following instructions to wait.

To make programs behave as if they were running on a simple in-order
pipeline, the instruction fetch and decode unit is required to issue
instructions in order, which allows dependences to be tracked, and the
commit unit is required to write results to registers and memory in program
fetch order. This conservative mode is called in-order commit. Hence, if
an exception occurs, the computer can point to the last instruction executed,
and the only registers updated will be those written by instructions before
the instruction causing the exception. Although the front end (fetch and
issue) and the back end (commit) of the pipeline run in order, the functional
units are free to initiate execution whenever the data they need is available.
Today, all dynamically scheduled pipelines use in-order commit.

in-order commit
A commit in which the results of pipelined execution are written to the
programmer visible state in the same order that instructions are fetched.

Dynamic scheduling is often extended by including hardware-based
speculation, especially for branch outcomes. By predicting the direction of

a branch, a dynamically scheduled processor can continue to fetch and
execute instructions along the predicted path. Because the instructions are
committed in order, we know whether or not the branch was correctly
predicted before any instructions from the predicted path are committed. A
speculative, dynamically scheduled pipeline can also support speculation on
load addresses, allowing load-store reordering, and using the commit unit to
avoid incorrect speculation. In the next section, we will look at the use of
dynamic scheduling with speculation in the Intel Core i7 design.

Hardware/Software Interface
Out-of-order execution creates new pipeline hazards that we did not see
in the earlier pipelines. A name dependence occurs when two instructions
use the same register or memory location, called a name, but there is no
flow of data between the instructions associated with that name. There
are two types of name dependences between an instruction i that
precedes instruction j in program order:

1. An antidependence between instruction i and instruction j occurs
when instruction j writes a register or memory location that
instruction i reads. The original ordering must be preserved to
ensure that i reads the correct value.

2. An output dependence occurs when instruction i and instruction j
write the same register or memory location. The ordering between
the instructions must be preserved to ensure that the value finally
written corresponds to instruction j.

Our original pipeline hazard was the result of what is called a true data
dependence.

For example, in this code below there is an antidependence between
swc1 and addiu on register x1 and a true data dependence between lwc1
and add.s on register f0. While there are no output dependencies
between instructions in a single loop, there are between different
iterations of the loop, for example, between the addiu instructions of the
first and second iterations.

Loop: lwc1 $f0,0(x1) # f0=array elementadd.s $f4,$f0,$f2 # add
scalar in f2swc1 $f4,0(x1) # store resultaddiu x1,x1,4 #
decrement pointer 8 bytesbne x1,x2,Loop # branch if x1 != x2

A pipeline hazard exists whenever there is a name or data dependence
between instructions, and they are close enough that the overlap during
execution would change the order of access to the operand involved in
the dependence. They lead to these more intuitive names of pipeline
hazards:

1. An antidependence can lead to a Write-After-Read (WAR) hazard.
2. An output dependence can lead to a Write-After-Write (WAW)

hazard.
3. A true data dependence or a Read-After-Write (RAW) hazard.

We do not have hazards for WAR or WAW hazards in our earlier
pipelines because all instructions execute in order and the writes occur
only in the last pipeline stage for register–register instructions and
always in the same pipeline stage for data access in load and store
instructions.

Understanding Program Performance
Given that compilers can also schedule code around data dependences,
you might ask why a superscalar processor would use dynamic
scheduling. There are three major reasons. First, not all stalls are
predictable. In particular, cache misses (see Chapter 5) in the memory
hierarchy cause unpredictable stalls. Dynamic scheduling allows the
processor to hide some of those stalls by continuing to execute
instructions while waiting for the stall to end.

Second, if the processor speculates on branch outcomes using dynamic
branch prediction, it cannot know the exact order of instructions at
compile time, since it depends on the predicted and actual behavior of
branches. Incorporating dynamic speculation to exploit more instruction-
level parallelism (ILP) without incorporating dynamic scheduling would
significantly restrict the benefits of speculation.

Third, as the pipeline latency and issue width change from one
implementation to another, the best way to compile a code sequence also
changes. For example, how to schedule a sequence of dependent
instructions is affected by both issue width and latency. The pipeline
structure affects both the number of times a loop must be unrolled to
avoid stalls as well as the process of compiler-based register renaming.
Dynamic scheduling allows the hardware to hide most of these details.
Thus, users and software distributors do not need to worry about having
multiple versions of a program for different implementations of the same
instruction set. Similarly, old legacy code will get much of the benefit of
a new implementation without the need for recompilation.

The BIG Picture
Both pipelining and multiple-issue execution increase peak instruction
throughput and attempt to exploit instruction-level parallelism (ILP).
Data and control dependences in programs, however, offer an upper limit

on sustained performance because the processor must sometimes wait for
a dependence to be resolved. Software-centric approaches to exploiting
ILP rely on the ability of the compiler to find and reduce the effects of
such dependences, while hardware-centric approaches rely on extensions
to the pipeline and issue mechanisms. Speculation, performed by the
compiler or the hardware, can increase the amount of ILP that can be
exploited via prediction, although care must be taken since speculating
incorrectly is likely to reduce performance.

Hardware/Software Interface
Modern, high-performance microprocessors are capable of issuing
several instructions per clock; unfortunately, sustaining that issue rate is
very difficult. For example, despite the existence of processors with four
to six issues per clock, very few applications can sustain more than two
instructions per clock. There are two primary reasons for this.

First, within the pipeline, the major performance bottlenecks arise
from dependences that cannot be alleviated, thus reducing the parallelism
among instructions and the sustained issue rate. Although little can be
done about true data dependences, often the compiler or hardware does
not know precisely whether a dependence exists or not, and so must
conservatively assume the dependence exists. For example, code that
makes use of pointers, particularly in ways that may lead to aliasing, will
lead to more implied potential dependences. In contrast, the greater
regularity of array accesses often allows a compiler to deduce that no

dependences exist. Similarly, branches that cannot be accurately
predicted whether at runtime or compile time will limit the ability to
exploit ILP. Often, additional ILP is available, but the ability of the
compiler or the hardware to find ILP that may be widely separated
(sometimes by the execution of thousands of instructions) is limited.

Second, losses in the memory hierarchy (the topic of Chapter 5) also
limit the ability to keep the pipeline full. Some memory system stalls can
be hidden, but limited amounts of ILP also limit the extent to which such
stalls can be hidden.

Energy Efficiency and Advanced Pipelining
The downside to the increasing exploitation of instruction-level parallelism
via dynamic multiple issue and speculation is potential energy inefficiency.
Each innovation was able to turn more transistors into performance, but
they often did so very ineffectively. Now that we have hit the power wall,
we are seeing designs with multiple processors per chip where the
processors are not as deeply pipelined or as aggressively speculative as the
predecessors.

The belief is that while the simpler processors are not as fast as their
sophisticated brethren, they deliver better performance per joule, so that
they can deliver more performance per chip when designs are constrained
more by energy than they are by number of transistors.

Figure 4.73 shows the number of pipeline stages, the issue width,
speculation level, clock rate, cores per chip, and power of several past and
recent microprocessors. Note the drop in pipeline stages and power as
companies switch to multicore designs.

Elaboration
A commit unit controls updates to the register file and memory. Some
dynamically scheduled processors update the register file immediately
during execution, using extra registers to implement the renaming
function and preserving the older copy of a register until the instruction
updating the register is no longer speculative. Other processors buffer the
result, typically in a structure called a reorder buffer, and the actual
update to the register file occurs later as part of the commit. Stores to
memory must be buffered until commit time either in a store buffer (see
Chapter 5) or in the reorder buffer. The commit unit allows the store to
write to memory from the buffer when the buffer has a valid address and
valid data, and when the store is no longer dependent on predicted
branches.

Elaboration
Memory accesses benefit from nonblocking caches, which continue
servicing cache accesses during a cache miss (see Chapter 5). Out-of-
order execution processors need the cache design to allow instructions to
execute during a miss.

Check Yourself
State whether the following techniques or components are associated
primarily with a software- or hardware-based approach to exploiting ILP.
In some cases, the answer may be both.

1. Branch prediction
2. Multiple issue
3. VLIW
4. Superscalar
5. Dynamic scheduling
6. Out-of-order execution
7. Speculation
8. Reorder buffer
9. Register renaming

FIGURE 4.73 Record of Intel Microprocessors in
terms of pipeline complexity, number of
cores, and power.
The Pentium 4 pipeline stages do not include the
commit stages. If we included them, the Pentium
4 pipelines would be even deeper.

4.12 Putting It All Together: The Intel Core i7
6700 and ARM Cortex-A53
In this section, we explore the design of two multiple issue processors: the
ARM Cortex-A53 core, which is used as the basis for several tablets and
cell phones, and the Intel Core i7 6700, a high-end, dynamically scheduled,

speculative processor intended for high-end desktops and server
applications. We begin with the simpler processor. This section is based on
Section 3.12 of Computer Architecture: A Quantitative Approach, sixth
edition.

The ARM Cortex-A53
The A53 is a dual-issue, statically scheduled superscalar with dynamic issue
detection, which allows the processor to issue two instructions per clock.
Figure 4.74 shows the basic pipeline structure of the pipeline. For
nonbranch, integer instructions, there are eight stages: F1, F2, D1, D2,
D3/ISS, EX1, EX2, and WB, as described in the caption. The pipeline is in
order, so an instruction can initiate execution only when its results are
available and when proceeding instructions have initiated. Thus, if the next
two instructions are dependent, both can proceed to the appropriate
execution pipeline, but they will be serialized when they get to the
beginning of that pipeline. When the pipeline issue logic indicates that the
result from the first instruction is available, the second instruction can issue.

FIGURE 4.74 The basic structure of the A53
integer pipeline is eight stages: F1 and F2
fetch the instruction, D1 and D2 do the basic
decoding, and D3 decodes some more
complex instructions and is overlapped with
the first stage of the execution pipeline (ISS).
After ISS, the Ex1, EX2, and WB stages
complete the integer pipeline. Branches use four
different predictors, depending on the type. The
floating-point execution pipeline is five cycles
deep, in addition to the five cycles needed for
fetch and decode, yielding 10 stages in total.
AGU stands for Address Generation Unit and
TLB for Transaction Lookaside Buffer (See
Chapter 5). The NEON unit performs the ARM
SIMD instructions of the same name. (From
Hennessy JL, Patterson DA: Computer architecture: A quantitative
approach, ed 6, Cambridge MA, 2018, Morgan Kaufmann.)

The four cycles of instruction fetch include an address generation unit
that produces the next PC either by incrementing the last PC or from one of
four predictors:

1. A single-entry branch target cache containing two instruction cache
fetches (the next two instructions following the branch, assuming
the prediction is correct). This target cache is checked during the
first fetch cycle, if it hits; then the next two instructions are
supplied from the target cache. In case of a hit and a correct
prediction, the branch is executed with no delay cycles.

2. A 3072-entry hybrid predictor, used for all instructions that do not
hit in the branch target cache, and operating during F3. Branches
handled by this predictor incur a two-cycle delay.

3. A 256-entry indirect branch predictor that operates during F4;
branches predicted by this predictor incur a three-cycle delay when
predicted correctly.

4. An 8-deep return stack, operating during F4 and incurring a three-
cycle delay.

Branch decisions are made in ALU pipe 0, resulting in a branch
misprediction penalty of eight cycles. Figure 4.75 shows the misprediction
rate for SPECint2006. The amount of work that is wasted depends on both
the misprediction rate and the issue rate sustained during the time that the
mispredicted branch was followed. As Figure 4.76 shows, wasted work
generally follows the misprediction rate, though it may be larger or
occasionally shorter.

FIGURE 4.75 Misprediction rate of the A53
branch predictor for SPECint2006. (Adapted from
Hennessy JL, Patterson DA: Computer architecture: A quantitative
approach, ed 6, Cambridge MA, 2018, Morgan Kaufmann.)

FIGURE 4.76 Wasted work due to branch
misprediction on the A53. Because the A53 is
an in-order machine, the amount of wasted
work depends on a variety of factors,
including data dependences and cache
misses, both of which will cause a stall.
(Adapted from Hennessy JL, Patterson DA: Computer
architecture: A quantitative approach, ed 6, Cambridge MA, 2018,
Morgan Kaufmann.)

Performance of the A53 Pipeline
The A53 has an ideal CPI of 0.5 because of its dual-issue structure. Pipeline
stalls can arise from three sources:

1. Functional hazards, which occur because two adjacent instructions
selected for issue simultaneously, use the same functional pipeline.
Because the A53 is statically scheduled, the compiler should try to
avoid such conflicts. When such instructions appear sequentially,
they will be serialized at the beginning of the execution pipeline,
when only the first instruction will begin execution.

2. Data hazards, which are detected early in the pipeline and may stall
either both instructions (if the first cannot issue, the second is
always stalled) or the second of a pair. Again, the compiler should
try to prevent such stalls when possible.

3. Control hazards, which arise only when branches are mispredicted.

Both TLB misses (Chapter 5) and cache misses also cause stalls. Figure
4.77 shows the CPI and the estimated contributions from various sources.

FIGURE 4.77 The estimated composition of the
CPI on the ARM A53 shows that pipeline stalls
are significant but are outweighed by cache
misses in the poorest performing programs
(Chapter 5).
These are subtracted from the CPI measured by
a detailed simulator to obtain the pipeline stalls.
Pipeline stalls include all three hazards. (From
Hennessy JL, Patterson DA: Computer architecture: A quantitative
approach, ed 6, Cambridge MA, 2018, Morgan Kaufmann.)

The A53 uses a shallow pipeline and a reasonably aggressive branch
predictor, leading to modest pipeline losses, while allowing the processor to
achieve high clock rates at modest power consumption. In comparison with

the i7, the A53 consumes approximately 1/200 the power for a quad core
processor!

Elaboration
The Cortex-A53 is a configurable core that supports the ARMv8
instruction set architecture. It is delivered as an IP (Intellectual Property)
core. IP cores are the dominant form of technology delivery in the
embedded, personal mobile device, and related markets; billions of ARM
and MIPS processors have been created from these IP cores.

Note that IP cores are different than the cores in the Intel i7 multicore
computers. An IP core (which may itself be a multicore) is designed to
be incorporated with other logic (hence it is the “core” of a chip),
including application-specific processors (such as an encoder or decoder
for video), I/O interfaces, and memory interfaces, and then fabricated to
yield a processor optimized for a particular application. Although the
processor core is almost identical, the resultant chips have many
differences. One parameter is the size of the L2 cache, which can vary by
a factor of 16.

The Intel Core i7 6700
x86 microprocessors employ sophisticated pipelining approaches, using
both dynamic multiple issue and dynamic pipeline scheduling with out-of-
order execution and speculation for its 14-stage pipeline. These processors,
however, are still faced with the challenge of implementing the complex
x86 instruction set, described in Chapter 2. Intel fetches x86 instructions
and translates them into internal MIPS-like instructions, which Intel calls
micro-operations. The micro-operations are then executed by a
sophisticated, dynamically scheduled, speculative pipeline capable of
sustaining an execution rate of up to six micro-operations per clock cycle.
This section focuses on that micro-operation pipeline.

When we consider the design of sophisticated, dynamically scheduled
processors, the design of the functional units, the cache and register file,
instruction issue, and overall pipeline control becomes intermingled,
making it difficult to separate the datapath from the pipeline. Because of

this interdependence, many engineers and researchers use the term
microarchitecture to refer to the detailed internal architecture of a
processor.

The Intel Core i7 uses a scheme for resolving antidependences and
incorrect speculation that uses a reorder buffer together with register
renaming. Register renaming explicitly renames the architectural registers
in a processor (16 in the case of the 64-bit version of the x86 architecture)
to a larger set of physical registers. The Core i7 uses register renaming to
remove antidependences. Register renaming requires the processor to
maintain a map between the architectural registers and the physical
registers, indicating which physical register is the most current copy of an
architectural register. By keeping track of the renamings that have occurred,
register renaming offers another approach to recovery in the event of
incorrect speculation: simply undo the mappings that have occurred since
the first incorrectly speculated instruction. This adjustment will cause the
state of the processor to return to the last correctly executed instruction,
keeping the correct mapping between the architectural and physical
registers.

Figure 4.78 shows the overall structure of the i7 pipeline. We will
examine the pipeline by starting with instruction fetch and continuing on to
instruction commit, following eight steps labeled in the figure.

1. Instruction fetch—The processor uses a sophisticated multilevel
branch predictor to achieve a balance between speed and prediction
accuracy. There is also a return address stack to speed up function
return. Mispredictions cause a penalty of about 17 cycles. Using
the predicted address, the instruction fetch unit fetches 16 bytes
from the instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer—The
predecode stage also breaks the 16 bytes into individual x86
instructions. This predecode is nontrivial because the length of an
x86 instruction can be from 1 to 17 bytes and the predecoder must
look through a number of bytes before it knows the instruction
length. Individualx86 instructions are placed into the instruction
queue.

3. Micro-op decode—Three of the decoders handle x86 instructions
that translate directly into one micro-operation. For x86
instructions that have more complex semantics, there is a
microcode engine that is used to produce the micro-operation
sequence; it can produce up to four micro-operations every cycle
and continues until the necessary micro-operation sequence has
been generated. The micro-operations are placed according to the
order of the x86 instructions in the 64-entry micro-operation buffer.

4. The micro-operation buffer preforms loop stream detection—If there
is a small sequence of instructions (less than 64 instructions) that
comprises a loop, the loop stream detector will find the loop and
directly issue the micro-operations from the buffer, eliminating the
need for the instruction fetch and instruction decode stages to be
activated.

5. Perform the basic instruction issue—Looking up the register location
in the register tables, renaming the registers, allocating a reorder
buffer entry, and fetching any results from the registers or reorder
buffer before sending the micro-operations to the reservation
stations. Up to four micro-operations can be processed every clock
cycle; they are assigned the next available reorder buffer entries.

6. The i7 uses a centralized reservation station shared by six functional
units. Up to six micro-operations may be dispatched to the
functional units every clock cycle.

7. The individual function units execute the micro-operations, and then
results are sent back to any waiting reservation station as well as to
the register retirement unit, where they will update the register state
once it is known that the instruction is no longer speculative. The
entry corresponding to the instruction in the reorder buffer is
marked as complete.

8. When one or more instructions at the head of the reorder buffer have
been marked as complete, the pending writes in the register
retirement unit are executed, and the instructions are removed from
the reorder buffer.

Elaboration

Hardware in the second and fourth steps can combine or fuse operations
together to reduce the number of operations that must be performed.
Macro-op fusion in the second step takes x86 instruction combinations,
such as compare followed by a branch, and fuses them into a single
operation. Microfusion in the fourth step combines micro-operation pairs
such as load/ALU operation and ALU operation/store and issues them to
a single reservation station (where they can still issue independently),
thus increasing the usage of the buffer. In a study of the Intel Core
architecture, which also incorporated microfusion and macrofusion, Bird
et al. [2007] discovered that microfusion had little impact on
performance, while macrofusion appears to have a modest positive
impact on integer performance and little impact on floating-point
performance.

FIGURE 4.78 The Intel Core i7 pipeline structure
shown with the memory system components.
The total pipeline depth is 14 stages, with
branch mispredictions typically costing 17
cycles, with the extra few cycles likely due to
the time to reset the branch predictor.
This design can buffer 72 loads and 56 stores.
The six independent functional units can each
begin execution of a ready microoperation in the
same cycle. Up to four micro-operations can be
processed in the register renaming table. The first

i7 processor was introduced in 2008; the i7 6700
is the sixth generation. The basic structure of the
i7 is similar, but successive generations have
enhanced performance by changing cache
strategies (Chapter 5), increasing memory
bandwidth, expanding the number of instructions
in flight, enhancing branch prediction, and
improving graphics support. (From Hennessy JL,
Patterson DA: Computer architecture: A quantitative approach ,
ed 6, Cambridge MA, 2018, Morgan Kaufmann.)

Performance of the i7
Because of the presence of aggressive speculation, it is difficult to
accurately attribute the gap between idealized performance and actual
performance. The extensive queues and buffers on the 6700 reduce the
probability of stalls because of a lack of reservation stations, renaming
registers, or reorder buffers significantly.

Thus, most losses come either from branch mispredicts or cache misses.
The cost of a branch mispredict is 17 cycles, whereas the cost of an L1 miss
is about 10 cycles (Chapter 5). An L2 miss is slightly more than three times
as costly as an L1 miss, and an L3 miss costs about 13 times what an L1
miss costs (130–135 cycles). Although the processor will attempt to find
alternative instructions to execute during L2 and L3 misses, it is likely that
some of the buffers will fill before a miss completes, causing the processor
to stop issuing instructions.

Figure 4.79 shows the overall CPI for the 19 SPECCPUint2006
benchmarks. The average CPI on the i7 6700 is 0.71. Figure 4.80 shows the
misprediction rate of the branch predictors of the Intel i7 6700. The
misprediction rates are roughly half of those for the A53 in Figure 4.76—
the median is 2.3% versus 3.9% for SPEC2006—and the CPI is less than
half: the median is 0.64 versus 1.36 for the much more aggressive
architecture. The clock rate is 3.4 GHz on the i7 versus up to 1.3 GHz for
the A53, so the average instruction time is 0.64 × 1/3.4 GHz = 0.18 ns

versus 1.36 × 1/1.3 GHz = 1.05 ns, or more than five times as fast. On the
other hand, the i7 uses 200×as much power!

FIGURE 4.79 The CPI for the SPECCPUint2006
benchmarks on the i7 6700. The data in this
section were collected by Professor Lu Peng and
PhD student Qun Liu, both of Louisiana State
University.

FIGURE 4.80 The misprediction rate for the integer
SPECCPU2006 benchmarks on the Intel Core i7
6700. The misprediction rate is computed as the
ratio of completed branches that are mispredicted
versus all completed branches. (Adapted from
Hennessy JL, Patterson DA: Computer architecture: A quantitative
approach, ed 6, Cambridge MA, 2018, Morgan Kaufmann.)

The Intel Core i7 combines a 14-stage pipeline and aggressive multiple
issue to achieve high performance. By keeping the latencies for back-to-
back operations low, the impact of data dependences is reduced. What are
the most serious potential performance bottlenecks for programs running on
this processor? The following list includes some potential performance
problems, the last three of which can apply in some form to any high-
performance pipelined processor.

■ The use of x86 instructions that do not map to a few simple micro-
operations
■ Branches that are difficult to predict, causing misprediction stalls
and restarts when speculation fails
■ Long dependences—typically caused by long-running instructions
or the memory hierarchy—that lead to stalls
■ Performance delays arising in accessing memory (see Chapter 5)
that cause the processor to stall

4.13 Going Faster: Instruction-Level
Parallelism and Matrix Multiply
Returning to the DGEMM example from Chapter 3, we can see the impact
of instruction level parallelism by unrolling the loop so that the multiple
issue, out-of-order execution processor has more instructions to work with.
Figure 4.81 shows the unrolled version of Figure 3.21, which contains the C
intrinsics to produce the AVX instructions.

FIGURE 4.81 Optimized C version of DGEMM
using C intrinsics to generate the AVX
subword-parallel instructions for the x86
(Figure 3.21) and loop unrolling to create
more opportunities for instruction-level
parallelism.
Figure 4.82 shows the assembly language
produced by the compiler for the inner loop,
which unrolls the three for-loop bodies to expose
instruction level parallelism.

Like the unrolling example in Figure 4.71 above, we are going to unroll
the loop 4 times. (We use the constant UNROLL in the C code to control the
amount of unrolling in case we want to try other values.) Rather than
manually unrolling the loop in C by making 4 copies of each of the
intrinsics in Figure 3.21, we can rely on the gcc compiler to do the unrolling
at − O3 optimization. We surround each intrinsic with a simple for loop
with 4 iterations (lines 9, 15, and 19) and replace the scalar C0 in Figure
3.22 with a 4-element array c[] (lines 8, 10, 16, and 20).

Figure 4.82 shows the assembly language output of the unrolled code. As
expected, in Figure 4.82 there are 4 versions of each of the AVX
instructions in Figure 3.22, with one exception. We only need 1 copy of the
vbroadcastsd instruction, since we can use the eight copies of the B

element in register %zmm0 repeatedly throughout the loop. Thus the 4 AVX
instructions in Figure 3.22 become 13 in Figure 4.82, and the 7 integer
instructions appear in both, although the constants and addressing changes
to account for the unrolling. Hence, despite unrolling 4 times, the number of
instructions in the body of the loop only doubles: from 11 to 20.

FIGURE 4.82 The x86 assembly language for the
body of the nested loops generated by compiling
the unrolled C code in Figure 4.81.

Unrolling nearly doubles performance. Optimizations for subword
parallelism and instruction level parallelism result in an overall speedup
of 4.4 versus the DGEMM in Figure 3.21. Compared to the Python version
in Chapter 1, it is 4600 times as fast.

Elaboration
There are no pipeline stalls despite the reuse of register %zmm5 in lines 9
to 12 of Figure 4.82 because the Intel Core i7 pipeline renames the
registers.

Check Yourself
Are the following statements true or false?

1. The Intel Core i7 uses a multiple-issue pipeline to directly execute
x86 instructions.

2. Both the A53 and the Core i7 use dynamic multiple issue.
3. The Core i7 microarchitecture has many more registers than x86

requires.
4. The Intel Core i7 uses less than half the pipeline stages of the earlier

Intel Pentium 4 Prescott (see Figure 4.73).

 Advanced Topic: an
Introduction to Digital Design Using a
Hardware Design Language to Describe and
Model a Pipeline and More Pipelining
Illustrations
Modern digital design is done using hardware description languages and
modern computer-aided synthesis tools that can create detailed hardware
designs from the descriptions using both libraries and logic synthesis. Entire
books are written on such languages and their use in digital design. This
section, which appears online, gives a brief introduction and shows how a
hardware design language, Verilog in this case, can be used to describe the
MIPS control both behaviorally and in a form suitable for hardware
synthesis. It then provides a series of behavioral models in Verilog of the
MIPS five-stage pipeline. The initial model ignores hazards, and additions
to the model highlight the changes for forwarding, data hazards, and branch
hazards.

We then provide about a dozen illustrations using the single-cycle
graphical pipeline representation for readers who want to see more detail on
how pipelines work for a few sequences of MIPS instructions.

4.14 An Introduction to Digital Design Using
a Hardware Design Language to Describe
and Model a Pipeline and More Pipelining
Illustrations
This CD section covers hardware decription languages and then gives a
dozen examples of pipeline diagrams, starting on page 4.13-18.

As mentioned in Appendix C, Verilog can describe processors for
simulation or with the intention that the Verilog specification be
synthesized. To achieve acceptable synthesis results in size and speed, a
behavioral specification intended for synthesis must carefully delineate the
highly combinational portions of the design, such as a datapath, from the
control. The datapath can then be synthesized using available libraries. A
Verilog specification intended for synthesis is usually longer and more
complex.

We start with a behavioral model of the 5-stage pipeline. To illustrate the
dichotomy between behavioral and synthesizeable designs, we then give
two Verilog descriptions of a multiple-cycle-per-instruction MIPS
processor: one intended solely for simulations and one suitable for
synthesis.

Using Verilog for Behavioral Specification
with Simulation for the 5-Stage Pipeline
Figure e4.14.1 shows a Verilog behavioral description of the pipeline that
handles ALU instructions as well as loads and stores. It does not
accommodate branches (even incorrectly!), which we postpone including
until later in the chapter.

FIGURE E4.14.1 A Verilog behavorial model for
the MIPS five-stage pipeline, ignoring branch
and data hazards.
As in the design earlier in Chapter 4, we use
separate instruction and data memories, which
would be implemented using separate caches as
we describe in Chapter 5.

Because Verilog lacks the ability to define registers with named fields
such as structures in C, we use several independent registers for each
pipeline register. We name these registers with a prefix using the same
convention; hence, IFIDIR is the IR portion of the IFID pipeline register.

This version is a behavioral description not intended for synthesis.
Instructions take the same number of clock cycles as our hardware design,
but the control is done in a simpler fashion by repeatedly decoding fields of
the instruction in each pipe stage. Because of this difference, the instruction
register (IR) is needed throughout the pipeline, and the entire IR is passed
from pipe stage to pipe stage. As you read the Verilog descriptions in this
chapter, remember that the actions in the always block all occur in parallel
on every clock cycle. Since there are no blocking assignments, the order of
the events within the always block is arbitrary.

Implementing Forwarding in Verilog
To further extend the Verilog model, Figure e4.14.2 shows the addition of
forwarding logic for the case when the source instruction is an ALU
instruction and the source. Neither load stalls nor branches are handled; we
will add these shortly. The changes from the earlier Verilog description are
highlighted.

Check Yourself
Someone has proposed moving the write for a result from an ALU
instruction from the WB to the MEM stage, pointing out that this would
reduce the maximum length of forwards from an ALU instruction by one
cycle. Which of the following are accurate reasons not to consider such a
change?

1. It would not actually change the forwarding logic, so it has no
advantage.

2. It is impossible to implement this change under any circum stance
since the write for the ALU result must stay in the same pipe stage
as the write for a load result.

3. Moving the write for ALU instructions would create the possibility
of writes occurring from two different instructions during the same
clock cycle. Either an extra write port would be required on the
register file or a structural hazard would be created.

4. The result of an ALU instruction is not available in time to do the
write during MEM.

FIGURE E4.14.2 A behavioral definition of the
five-stage MIPS pipeline with bypassing to
ALU operations and address calculations.
The code added to Figure e4.14.1 to handle
bypassing is highlighted. Because these
bypasses only require changing where the ALU
inputs come from, the only changes required are
in the combinational logic responsible for
selecting the ALU inputs.

The Behavioral Verilog with Stall Detection
If we ignore branches, stalls for data hazards in the MIPS pipe line are
confined to one simple case: loads whose results are currently in the WB

clock stage. Thus, extending the Verilog to handle a load with a destination
that is either an ALU instruction or an effective address calculation is
reasonably straightforward, and Figure 4.13.3 shows the few additions
needed.

Check Yourself
Someone has asked about the possibility of data hazards occur ring
through memory, as opposed to through a register. Which of the
following statements about such hazards are true?

1. Since memory accesses only occur in the MEM stage, all memory
operations are done in the same order as instruction execution,
making such hazards impossible in this pipe line.

2. Such hazards are possible in this pipeline; we just have not
discussed them yet.

3. No pipeline can ever have a hazard involving memory, since it is the
programmer’s job to keep the order of memory references accurate.

4. Memory hazards may be possible in some pipelines, but they cannot
occur in this particular pipeline.

5. Although the pipeline control would be obligated to maintain
ordering among memory references to avoid hazards, it is
impossible to design a pipeline where the references could be out
of order.

FIGURE E4.14.3 A behavioral definition of the
five-stage MIPS pipeline with stalls for loads

when the destination is an ALU instruction or
effective address calculation.
The changes from Figure e4.14.2 are highlighted.

Implementing the Branch Hazard Logic in Verilog
We can extend our Verilog behavioral model to implement the control for
branches. We add the code to model branch equal using a “predict not
taken” strategy. The Verilog code is shown in Figure e4.14.4. It implements
the branch hazard by detecting a taken branch in ID and using that signal to
squash the instruction in IF (by setting the IR to 0, which is an effective no-
op in MIPS-32); in addition, the PC is assigned to the branch target. Note
that to prevent an unexpected latch, it is important that the PC is clearly
assigned on every path through the always block; hence, we assign the PC
in a single if statement. Lastly, note that although Figure e4.14.4
incorporates the basic logic for branches and control hazards, the
incorporation of branches requires additional bypassing and data hazard
detection, which we have not included.

FIGURE E4.14.4 A behavioral definition of the
five-stage MIPS pipeline with stalls for loads
when the destination is an ALU instruction or
effective address calculation.
The changes from Figure e4.14.3 are highlighted.

Using Verilog for Behavioral Specification
with Synthesis
To demonstate the contrasting types of Verilog, we show two descriptions
of a different, nonpipelined implementation style of MIPS that uses
multiple clock cycles per instruction. (Since some instructors make a
synthesizeable description of the MIPS pipe line project for a class, we
chose not to include it here. It would also be long.)

Figure e4.14.5 gives a behavioral specification of a multicycle
implementation of the MIPS processor. Because of the use of behavioral
operations, it would be difficult to synthesize a separate datapath and
control unit with any reasonable efficiency. This version demonstrates
another approach to the control by using a Mealy finite-state machine (see
discussion in Section C.10 of Appendix B). The use of a Mealy machine,
which allows the output to depend both on inputs and the current state,
allows us to decrease the total number of states.

FIGURE E4.14.5 A behavioral specification of the
multicycle MIPS design.
This has the same cycle behavior as the
multicycle design, but is purely for simulation and
specification. It cannot be used for synthesis.

Since a version of the MIPS design intended for synthesis is considerably
more complex, we have relied on a number of Verilog modules that were
specified in Appendix B, including the following:

■ The 4-to-1 multiplexor shown in Figure B.4.2, and the 3-to-1
multiplexor that can be trivially derived based on the 4-to-1
multiplexor.
■ The MIPS ALU shown in Figure B.5.15.
■ The MIPS ALU control defined in Figure B.5.16.
■ The MIPS register file defined in Figure B.8.11.

Now, let’s look at a Verilog version of the MIPS processor intended for
synthesis. Figure e4.14.6 shows the structural version of the MIPS datapath.
Figure e4.14.7 uses the datapath module to specify the MIPS CPU. This
version also demonstrates another approach to implementing the control
unit, as well as some optimizations that rely on relationships between
various control signals. Observe that the state machine specification only
provides the sequencing actions.

FIGURE E4.14.6 A Verilog version of the
multicycle MIPS datapath that is appropriate
for synthesis.
This datapath relies on several units from
Appendix B. Initial statements do not synthesize,
and a version used for synthesis would have to
incorporate a reset signal that had this effect.
Also note that resetting R0 to 0 on every clock is
not the best way to ensure that R0 stays 0;
instead, modifying the register file module to
produce 0 whenever R0 is read and to ignore
writes to R0 would be a more efficient solution.

FIGURE E4.14.7 The MIPS CPU using the
datapath from Figure e4.14.6.

The setting of the control lines is done with a series of assign statements
that depend on the state as well as the opcode field of the instruction
register. If one were to fold the setting of the control into the state
specification, this would look like a Mealy-style finite-state control unit.
Because the setting of the control lines is specified using assign statements
outside of the always block, most logic synthesis systems will generate a
small implementation of a finite-state machine that determines the setting of

the state register and then uses external logic to derive the control inputs to
the datapath.

In writing this version of the control, we have also taken advantage of a
number of insights about the relationship between various control signals as
well as situations where we don’t care about the control signal value; some
examples of these are given in the following elaboration.

Elaboration
When specifying control, designers often take advantage of knowledge
of the control so as to simplify or shorten the control specification. Here
are a few examples from the specification in Figures e4.14.6 and e4.14.7.

1. MemtoReg is set only in two cases, and then it is always the inverse of
RegDst, so we just use the inverse of RegDst.

2. IRWrite is set only in state 1.
3. The ALU does not operate in every state and, when unused, can

safely do anything.
4. RegDst is 1 in only one case and can otherwise be set to 0. In

practice it might be better to set it explicitly when needed and
otherwise set it to X, as we do for IorD. First, it allows additional
logic optimization possibilities through the exploitation of don’t-
care terms (see Appendix B for further discussion and examples).
Second, it is a more precise specification, and this allows the
simulation to more closely model the hardware, possibly
uncovering additional errors in the specification.

More Illustrations of Instruction Execution on
the Hardware
To reduce the cost of this book, in the third edition we moved sections and
figures that were used by a minority of instructors online. This subsection
recaptures those figures for readers who would like more supplemental
material to better understand pipelining. These are all single-clock-cycle
pipeline diagrams, which take many figures to illustrate the execution of a
sequence of instructions.

The three examples are for code with no hazards, an example of
forwarding on the pipelined implementation, and an example of bypassing
on the pipelined implementation.

No Hazard Illustrations
On page 297, we gave the example code sequence

1w $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

Figures 4.43 and 4.44 showed the multiple-clock-cycle pipeline diagrams
for this two-instruction sequence executing across six clock cycles. Figures
e4.14.8 through e4.14.10 show the corresponding single-clock-cycle
pipeline diagrams for these two instructions. Note that the order of the
instructions differs between these two types of diagrams: the newest
instruction is at the bottom and to the right of the multiple-clock-cycle
pipeline diagram, and it is on the left in the single-clock-cycle pipeline
diagram.

FIGURE E4.14.8 Single-cycle pipeline diagrams
for clock cycles 1 (top diagram) and 2 (bottom
diagram).
This style of pipeline representation is a snap
shot of every instruction executing during one
clock cycle. Our example has but two
instructions, so at most two stages are identified

in each clock cycle; normally, all five stages are
occupied. The highlighted portions of the
datapath are active in that clock cycle. The load
is fetched in clock cycle 1 and decoded in clock
cycle 2, with the subtract fetched in the second
clock cycle. To make the figures easier to
understand, the other pipeline stages are empty,
but normally there is an instruction in every
pipeline stage.

FIGURE E4.14.9 Single-cycle pipeline diagrams
for clock cycles 3 (top diagram) and 4 (bottom
diagram).
In the third clock cycle in the top diagram, lw
enters the EX stage. At the same time, sub
enters ID. In the fourth clock cycle (bottom
datapath), lw moves into MEM stage, reading

memory using the address found in EX/MEM at
the beginning of clock cycle 4. At the same time,
the ALU subtracts and then places the difference
into EX/MEM at the end of the clock cycle.

FIGURE E4.14.10 Single-cycle pipeline diagrams
for clock cycles 5 (top diagram) and 6 (bottom
diagram).
In clock cycle 5, lw completes by writing the data
in MEM/WB into register 10, and sub sends the
difference in EX/MEM to MEM/WB. In the next clock
cycle, sub writes the value in MEM/WB to register
11.

More Examples

To understand how pipeline control works, let’s consider these five
instructions going through the pipeline:

lw $10, 20($1)

sub $11, $2, $3

and $12, $4, $5

or $13, $6, $7

add $14, $8, $9

Figures e4.14.11 through e4.14.15 show these instructions proceeding
through the nine clock cycles it takes them to complete execution,
highlighting what is active in a stage and identifying the instruction
associated with each stage during a clock cycle. If you examine them
carefully, you may notice:

■ In Figure e4.14.13 you can see the sequence of the destination
register numbers from left to right at the bottom of the pipeline
registers. The numbers advance to the right during each clock cycle,
with the MEM/WB pipeline register sup plying the number of the
register written during the WB stage.
■ When a stage is inactive, the values of control lines that are
deasserted are shown as 0 or X (for don’t care).
■ Sequencing of control is embedded in the pipeline structure itself.
First, all instructions take the same number of clock cycles, so there is
no special control for instruction duration. Second, all control
information is computed during instruction decode and then passed
along by the pipeline registers.

FIGURE E4.14.11 Clock cycles 1 and 2.
The phrase “before <i>” means the ith instruction
before lw. The lw instruction in the top datapath is
in the IF stage. At the end of the clock cycle, the
lw instruction is in the IF/ID pipeline registers. In

the second clock cycle, seen in the bottom
datapath, the lw moves to the ID stage, and sub
enters in the IF stage. Note that the values of the
instruction fields and the selected source
registers are shown in the ID stage. Hence
register $1 and the constant 20, the operands of
lw, are written into the ID/EX pipeline register.
The number 10, representing the destination
register number of lw, is also placed in ID/EX.
Bits 15–11 are 0, but we use X to show that a
field plays no role in a given instruction. The top
of the ID/EX pipeline register shows the control
values for lw to be used in the remaining stages.
These control values can be read from the lw row
of the table in Figure 4.18.

FIGURE E4.14.12 Clock cycles 3 and 4.
In the top diagram, lw enters the EX stage in the
third clock cycle, adding $1 and 20 to form the
address in the EX/MEM pipeline register. (The lw

instruction is written lw $10,… upon reaching EX,
because the identity of instruction operands is not
needed by EX or the subsequent stages. In this
version of the pipeline, the actions of EX, MEM,
and WB depend only on the instruction and its
destination register or its target address.) At the
same time, sub enters ID, reading registers $2
and $3, and the and instruction starts IF. In the
fourth clock cycle (bottom datapath), lw moves
into MEM stage, reading memory using the value
in EX/MEM as the address. In the same clock
cycle, the ALU subtracts $3 from $2 and places
the difference into EX/MEM registers $4 and $5
are read during ID and the or instruction enters
IF. The two diagrams show the control signals
being created in the ID stage and peeled off as
they are used in subsequent pipe stages.

FIGURE E4.14.13 Clock cycles 5 and 6.
With add, the final instruction in this example,
entering IF in the top datapath, all instructions are
engaged. By writing the data in MEM/WB into

register 10, lw completes; both the data and the
register number are in MEM/WB. In the same
clock cycle, sub sends the difference in EX/MEM
to MEM/WB, and the rest of the instructions move
forward. In the next clock cycle, sub selects the
value in MEM/WB to write to register number 11,
again found in MEM/WB. The remaining
instructions play follow-the-leader: the ALU
calculates the OR of $6 and $7 for the or
instruction in the EX stage, and registers $8 and
$9 are read in the ID stage for the add instruction.
The instructions after add are shown as inactive
just to emphasize what occurs for the five
instructions in the example. The phrase “after<i>”
means the ith instruction after add.

FIGURE E4.14.14 Clock cycles 7 and 8.
In the top datapath, the add instruction brings up
the rear, adding the values corresponding to
registers $8 and $9 during the EX stage. The

result of the or instruction is passed from
EX/MEM to MEM/WB in the MEM stage, and the
WB stage writes the result of the and instruction
in MEM/WB to register $12. Note that the control
signals are deasserted (set to 0) in the ID stage,
since no instruction is being executed. In the
following clock cycle (lower drawing), the WB
stage writes the result to register $13, thereby
completing or, and the MEM stage passes the
sum from the add in EX/MEM to MEM/WB. The
instructions after add are shown as inactive for
pedagogical reasons.

FIGURE E4.14.15 Clock cycle 9.
The WB stage writes the sum in MEM/WB into
register $14, completing add and the five-
instruction sequence. The instructions after add
are shown as inactive for pedagogical reasons.

Forwarding Illustrations
We can use the single-clock-cycle pipeline diagrams to show how
forwarding operates, as well as how the control activates the forwarding
paths. Consider the following code sequence in which the dependences
have been highlighted:

sub $2, $1, $3

and $4, $2, $5

or $4, $4, $2

add $9, $4, $2

Figures e4.14.16 and e4.14.17 show the events in clock cycles 3–6 in the
execution of these instructions.

FIGURE E4.14.16 Clock cycles 3 and 4 of the
instruction sequence on page 4.13-26.
The bold lines are those active in a clock cycle,
and the italicized register numbers in color
indicate a hazard. The forwarding unit is
highlighted by shading it when it is forwarding
data to the ALU. The instructions before sub are
shown as inactive just to emphasize what occurs
for the four instructions in the example. Operand
names are used in EX for control of forwarding;

thus they are included in the instruction label for
EX. Operand names are not needed in MEM or
WB, so … is used. Compare this with Figures
e4.14.12 through e4.14.15, which show the
datapath without forwarding where ID is the last
stage to need operand information.

FIGURE E4.14.17 Clock cycles 5 and 6 of the
instruction sequence on page 4.13-26.
The forwarding unit is highlighted when it is
forwarding data to the ALU. The two instructions
after add are shown as inactive just to emphasize
what occurs for the four instructions in the
example. The bold lines are those active in a
clock cycle, and the italicized register numbers in
color indicate a hazard.

In clock cycle 4, the forwarding unit sees the writing by the sub
instruction of register $2 in the MEM stage, while the and instruction in the
EX stage is reading register $2. The forwarding unit selects the EX/MEM
pipeline register instead of the ID/EX pipeline register as the upper input to
the ALU to get the proper value for register $2. The following or instruction
reads register $4, which is written by the and instruction, and register $2,
which is written by the sub instruction.

Thus, in clock cycle 5, the forwarding unit selects the EX/MEM pipeline
register for the upper input to the ALU and the MEM/WB pipeline register
for the lower input to the ALU. The following add instruction reads both
register $4, the target of the and instruction, and register $2, which the sub
instruction has already written. Notice that the prior two instructions both
write register $4, so the forwarding unit must pick the immediately
preceding one (MEM stage).

In clock cycle 6, the forwarding unit thus selects the EX/MEM pipeline
register, containing the result of the or instruction, for the upper ALU input
but uses the nonforwarding register value for the lower input to the ALU.

Illustrating Pipelines with Stalls and Forwarding
We can use the single-clock-cycle pipeline diagrams to show how the
control for stalls works. Figures e4.14.18 through e4.14.20 show the single-
cycle diagram for clocks 2 through 7 for the following code sequence
(dependences highlighted):

1w $2, 20($1)

and $4, $2,$5

or $4, $4,$2

add $9, $4,$2

FIGURE E4.14.18 Clock cycles 2 and 3 of the
instruction sequence on page 4.13-26 with a
load replacing sub.
The bold lines are those active in a clock cycle,
the italicized register numbers in color indicate a
hazard, and the … in the place of operands
means that their identity is information not
needed by that stage. The values of the
significant control lines, registers, and register
numbers are labeled in the figures. The and

instruction wants to read the value created by the
lw instruction in clock cycle 3, so the hazard
detection unit stalls the and and or instructions.
Hence, the hazard detection unit is highlighted.

FIGURE E4.14.19 Clock cycles 4 and 5 of the
instruction sequence on page 4.13-26 with a
load replacing sub.
The bubble is inserted in the pipeline in clock
cycle 4, and then the and instruction is allowed to
proceed in clock cycle 5. The forwarding unit is
highlighted in clock cycle 5 because it is
forwarding data from lw to the ALU. Note that in
clock cycle 4, the forwarding unit forwards the
address of the lw as if it were the contents of

register $2; this is rendered harmless by the
insertion of the bubble. The bold lines are those
active in a clock cycle, and the italicized register
numbers in color indicate a hazard.

FIGURE E4.14.20 Clock cycles 6 and 7 of the
instruction sequence on page 4.13-26 with a
load replacing sub.
Note that unlike in Figure e4.14.17, the stall
allows the lw to complete, and so there is no
forwarding from MEM/WB in clock cycle 6.
Register $4 for the add in the EX stage still
depends on the result from or in EX/MEM, so the
forwarding unit passes the result to the ALU. The
bold lines show ALU input lines active in a clock

cycle, and the italicized register numbers indicate
a hazard. The instructions after add are shown as
inactive for pedagogical reasons.

4.15 Fallacies and Pitfalls
Fallacy: Pipelining is easy.

Our books testify to the subtlety of correct pipeline execution. Our
advanced book had a pipeline bug in its first edition, despite its being
reviewed by more than 100 people and being class-tested at 18 universities.
The bug was uncovered only when someone tried to build the computer in
that book. The fact that the Verilog to describe a pipeline like that in the
Intel Core i7 will be many thousands of lines is an indication of the
complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of
technology.

When the number of transistors on-chip and the speed of transistors made
a five-stage pipeline the best solution, then the delayed branch (see the first
Elaboration on page 267) was a simple solution to control hazards. With
longer pipelines, superscalar execution, and dynamic branch prediction, it is
now redundant. In the early 1990s, dynamic pipeline scheduling took too
many resources and was not required for high performance, but as transistor
budgets continued to double due to Moore’s Law logic became much faster
than memory, then multiple functional units and dynamic pipelining made
more sense. Today, concerns about power are leading to less aggressive
designs.

Pitfall: Failure to consider instruction set design can adversely impact
pipelining.

Many of the difficulties of pipelining arise because of instruction set
complications. Here are some examples:

■ Widely variable instruction lengths and running times can lead to
imbalance among pipeline stages and severely complicate hazard
detection in a design pipelined at the instruction set level. This
problem was overcome, initially in the DEC VAX 8500 in the late
1980s, using the micro-operations and micropipelined scheme that the
Intel Core i7 employs today. Of course, the overhead of translation
and maintaining correspondence between the micro-operations and
the actual instructions remains.
■ Sophisticated addressing modes can lead to different sorts of
problems. Addressing modes that update registers complicate hazard
detection. Other addressing modes that require multiple memory
accesses substantially complicate pipeline control and make it
difficult to keep the pipeline flowing smoothly.
■ Perhaps the best example is the DEC Alpha and the DEC NVAX. In
comparable technology, the newer instruction set architecture of the
Alpha allowed an implementation whose performance is more than
twice as fast as NVAX. In another example, Bhandarkar and Clark
[1991] compared the MIPS M/2000 and the DEC VAX 8700 by
counting clock cycles of the SPEC benchmarks; they concluded that
although the MIPS M/2000 executes more instructions, the VAX on
average executes 2.7 times as many clock cycles, so the MIPS is
faster.

4.16 Concluding Remarks
Nine-tenths of wisdom consists of being wise in time.

American proverb

As we have seen in this chapter, both the datapath and control for a
processor can be designed starting with the instruction set architecture and
an understanding of the basic characteristics of the technology. In Section
4.3, we saw how the datapath for a MIPS processor could be constructed
based on the architecture and the decision to build a single-cycle
implementation. Of course, the underlying technology also affects many

design decisions by dictating what components can be used in the datapath,
as well as whether a single-cycle implementation even makes sense.

Pipelining improves throughput but not the inherent execution time, or
instruction latency, of instructions; for some instructions, the latency is
similar in length to the single-cycle approach. Multiple instruction issue
adds additional datapath hardware to allow multiple instructions to begin
every clock cycle, but at an increase in effective latency. Pipelining was
presented as reducing the clock cycle time of the simple single-cycle
datapath. Multiple instruction issue, in comparison, clearly focuses on
reducing clock cycles per instruction (CPI).

instruction latency
The inherent execution time for an instruction.

Pipelining and multiple issue both attempt to exploit instruction-level
parallelism. The presence of data and control dependences, which can
become hazards, are the primary limitations on how much parallelism can

be exploited. Scheduling and speculation via prediction, both in hardware
and in software, are the primary techniques used to reduce the performance
impact of dependences.

We showed that unrolling the DGEMM loop four times exposed more
instructions that could take advantage of the out-of-order execution engine
of the Core i7 to more than double performance.

The switch to longer pipelines, multiple instruction issue, and dynamic
scheduling in the mid-1990s helped sustain the 60% per year processor
performance increase that started in the early 1980s. As mentioned in
Chapter 1, these microprocessors preserved the sequential programming
model, but they eventually ran into the power wall. Thus, the industry was
forced to switch to multiprocessors, which exploit parallelism at much
coarser levels (the subject of Chapter 6). This trend has also caused
designers to reassess the energy-performance implications of some of the

inventions since the mid-1990s, resulting in a simplification of pipelines in
the more recent versions of microarchitectures.

To sustain the advances in processing performance via parallel
processors, Amdahl’s law suggests that another part of the system will
become the bottleneck. That bottleneck is the topic of the next chapter: the
memory hierarchy.

 Historical Perspective
and Further Reading

This section, which appears online, discusses the history of the first
pipelined processors, the earliest superscalars, and the development of out-
of-order and speculative techniques, as well as important developments in
the accompanying compiler technology.

4.17 Historical Perspective and Further
Reading

supercomputer: Any machine still on the drawing board.

Stan Kelly-Bootle, The Devil’s DP Dictionary, 1981

This section discusses the history of the first pipelined processors, the
earliest superscalars, and the development of out-of-order and speculative
techniques, as well as important developments in the accompanying
compiler technology.

It is generally agreed that one of the first general-purpose pipelined
computers was Stretch, the IBM 7030 (Figure e4.17.1). Stretch followed the
IBM 704 and had a goal of being 100 times faster than the 704. The goals
were a “stretch” of the state of the art at that time—hence the nickname.
The plan was to obtain a factor of 1.6 from overlap ping fetch, decode, and
exe cute by using a four-stage pipeline. Apparently, the rest was to come
from much more hardware and faster logic. Stretch was also a training
ground for both the architects of the IBM 360, Gerrit Blaauw and Fred
Brooks, Jr., and the architect of the IBM RS/6000, John Cocke. Both
Brooks and Cocke later won ACM A.M. Turing Awards, the highest honor
in computer science.

FIGURE E4.17.1 The Stretch computer, one of the
first pipelined computers.

Control Data Corporation (CDC) delivered what is considered to be the
first supercomputer, the CDC 6600, in 1964 (Figure e4.17.2). The core
instructions of Cray’s subsequent computers have many similarities to those
of the original CDC 6600. The CDC 6600 was unique in many ways. The
interaction between pipelining and instruction set design was understood,
and the instruction set was kept simple to promote pipelining. The CDC
6600 also used an advanced pack aging technology. James Thornton’s book
[1970] provides an excellent description of the entire computer, from
technology to architecture, and includes a foreword by Seymour Cray.
(Unfortunately, this book is currently out of print.) Jim Smith, then working
at CDC, developed the original 2-bit branch prediction scheme and
explored several techniques for enhancing instruction issue. Cray, Thornton,
and Smith have each won the ACM Eckert-Mauchly Award (in 1989, 1994,
and 1999, respectively).

FIGURE E4.17.2 The CDC 6600, the first
supercomputer.

The IBM 360/91 introduced many new concepts, including dynamic
detection of memory hazards, generalized forwarding, and reservation
stations (Figure e4.17.3). The approach is normally named Tomasulo’s
algorithm, after an engineer who worked on the project. The team that
created the 360/91 was led by Michael Flynn, who was given the 1992
ACM Eckert-Mauchly Award, in part for his contributions to the IBM
360/91; in 1997, the same award went to Robert Tomasulo for his
pioneering work on out-of-order processing.

FIGURE E4.17.3 The IBM 360/91 pushed the state
of the art in pipe lined execution when it was
unveiled in 1966.

The internal organization of the 360/91 shares many features with the
Pentium III and Pentium 4, as well as with several other microprocessors.
One major difference was that there was no branch prediction in the 360/91
and hence no speculation. Another major difference was that there was no
commit unit, so once the instructions finished execution, they updated the
registers. Out-of-order instruction commit led to imprecise interrupts,
which proved to be unpopular and led to the commit units in dynamically
scheduled pipelined processors since that time. Although the 360/91 was
not a success, its key ideas were resurrected later and exist in some form in
the majority of desktop and server microprocessors since 2000.

Improving Pipelining Effectiveness and
Adding Multiple Issue
The RISC processors refined the notion of compiler-scheduled pipelines in
the early 1980s. The concepts of delayed branches and delayed loads—
common in microprogramming—were extended into the high-level
architecture. In fact, the Stanford processor that led to the commercial

MIPS architecture was called “Microprocessor without Interlocked
Pipelined Stages” because it was up to the assembler or compiler to avoid
data hazards.

In addition to its contribution to the development of the RISC concepts,
IBM did pioneering work on multiple issue. In the 1960s, a project called
ACS was under way. It included multiple-instruction issue concepts and the
notion of integrated compiler and architecture design, but it never reached
product stage. The earliest proposal for a superscalar processor that
dynamically makes issue decisions was by John Cocke; he described the
key ideas in several talks in the mid-1980s and, with Tilak Agarwala,
coined the name superscalar. This original design was a two-issue machine
named Cheetah, which was followed by a more widely discussed four-issue
machine named America. The IBM Power-1 architecture, used in the
RS/6000 line, is based on these ideas, and the PowerPC is a variation of the
Power-1 architecture. Cocke won the Turing Award, the highest award in
computer science and engineering, for his architecture work.

Static multiple issue, as exemplified by the long instruction word (LIW)
or sometimes very long instruction word (VLIW) approaches, appeared in
real designs before the superscalar approach. In fact, the earliest multiple-
issue machines were special-purpose attached processors designed for
scientific applications. Culler Scientific and Floating Point Systems were
two of the most prominent manufacturers of such computers. Another
inspiration for the use of multiple operations per instruction came from
those working on microcode compilers. Such inspiration led to a research
project at Yale led by Josh Fisher, who coined the term VLIW. Cydrome
and Multiflow were two early companies involved in building mini-
supercomputers using processors with multiple-issue capability. These
processors, built with bit-slice and multiple-chip gate array
implementations, arrived on the market at the same time as the first RISC
microprocessors. Despite some promising performance on high-end
scientific codes, the much better cost/performance of the microprocessor-
based computers doomed the first generation of VLIW computers. Bob Rau
and Josh Fisher won the Eckert-Mauchly Award in 2002 and 2003,
respectively, for their contributions to the development of multiple
processors and software techniques to exploit ILP.

The very beginning of the 1990s saw the first superscalar processors
using static scheduling and no speculation, including versions of the MIPS
and PowerPC architectures. The early 1990s also saw important research at
a number of universities, including Wisconsin, Stanford, Illinois, and
Michigan, focused on techniques for exploiting additional ILP through
multiple issue with and without speculation. These research insights were
used to build dynamically scheduled, speculative processors, including the
Motorola 88110, MIPS R10000, DEC Alpha 21264, PowerPC 603, and the
Intel Pentium Pro, Pentium III, and Pentium 4.

In 2001, Intel introduced the IA-64 architecture and its first
implementation, Itanium. Itanium represented a return to a more compiler-
intensive approach that they called EPIC. EPIC represented a considerable
enhancement over the early VLIW architectures, removing many of their
drawbacks. It has had modest sales. In 2019 Intel announced that it would
be discontinuing its Itanium 9700-series processors, the last EPIC chips on
the market.

Compiler Technology for Exploiting ILP
Successful development of processors to exploit ILP has depended on
progress in compiler technology. The concept of loop-unrolling was
understood early, and a number of companies and researchers—including
Floating Point Systems, Cray, and the Stanford MIPS project—developed
compilers that made use of loop-unrolling and pipeline scheduling to
improve instruction through put. A special purpose processor called WARP,
designed at Carnegie Mellon University, inspired the development of
software pipelining, an approach that symbolically unrolls loops.

To exploit higher levels of ILP, more aggressive compiler technology was
needed. The VLIW project at Yale developed the concept of trace
scheduling that Multi-flow implemented in their compilers. Trace
scheduling relies on aggressive loop unrolling and path prediction to
compile favored execution traces efficiently. The Cydrome designers
created early versions of predication and support for software pipelining.
Hwu at Illinois worked on extended versions of loop-unrolling, called
superblocks, and techniques for compiling with predication. The concepts

from Multiflow, Cydrome, and the research group at Illinois served as the
architectural and compiler basis for the IA-64 architecture.

Further Reading
Bhandarkar, D. and D. W. Clark [1991]. “Performance from architecture:
Comparing a RISC and a CISC with similar hardware organizations,” Proc.
Fourth Conf. on Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (April), Palo Alto, CA, 310–19.

A quantitative comparison of RISC and CISC written by scholars who
argued for CISCs as well as built them; they conclude that MIPS is between
2 and 4 times faster than a VAX built with similar technology, with a mean
of 2.7.

Fisher, J. A. and B. R. Rau [1993]. Journal of Supercomputing (January),
Kluwer.

This entire issue is devoted to the topic of exploiting ILP. It contains
papers on both the architecture and software and is a wonderful source for
further references.

Hennessy, J. L. and D. A. Patterson [2001]. Computer Architecture: A
Quantitative Approach, fourth edition, Morgan Kaufmann, San Francisco.

Chapter 2 and Appendix A go into considerably more detail about
pipelined processors (almost 200 pages), including superscalar processors
and VLIW processors. Appendix G describes Itanium.

Jouppi, N. P. and D. W.Wall [1989]. “Available instruction-level
parallelism for superscalar and superpipelined processors,” Proc. Third
Conf. on Architectural Sup port for Programming Languages and
Operating Systems, IEEE/ACM (April), Boston, 272–82.

A comparison of deeply pipelined (also called superpipelined) and
superscalar systems.

Kogge, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-
Hill, New York.

A formal text on pipelined control, with emphasis on underlying
principles.

Russell, R. M. [1978]. “The CRAY-1 computer system,” Comm. of the
ACM 21:1 (January), 63–72.

A short summary of a classic computer that uses vectors of operations to
remove pipeline stalls.

Smith, A. and J. Lee [1984]. “Branch prediction strategies and branch
target buffer design,” Computer 17:1 (January), 6–22.

An early survey on branch prediction.
Smith, J. E. and A. R. Plezkun [1988]. “Implementing precise interrupts

in pipelined processors,” IEEE Trans. on Computers 37:5 (May), 562–73.
Covers the difficulties in interrupting pipelined computers.
Thornton, J. E. [1970]. Design of a Computer. The Control Data 6600,

Glenview, IL: Scott, Foresman.
A classic book describing a classic computer, considered the first

supercomputer.

4.18 Self Study
While higher performance processors have much longer pipelines than the
five stages, some very low cost or low energy processors have shorter
pipelines. Assume the same timing of the data path components as in
Figures 4.26 and 4.27.

Three-Stage Pipe. How would you split the data path in stages if it was a
three-stage pipeline instead of five?

Clock Rate. Ignoring an impact of pipeline registers or forwarding logic
on the clock cycle time, what are the clock rates for the five-stage versus
the three-stage pipelines? Assume the same timing of the data path
components as in Figures 4.26 and 4.27.

Register Write/Read Data Hazards? Do you still have them in with
three stages? If so, will forwarding fix them?

Load-Use Data Hazards? Do you still have them in with three stages?
Do you need to stall the pipeline or can forwarding fix them?

Control Hazards? Do you still have them in with three stages? If so,
how can you reduce their impact?

CPI. Will the clocks per instruction of the three-stage pipeline be higher
or lower than the five-stage pipeline?

Self-Study Answers

Three-Stage Pipe. While there are multiple possible solutions, this one is a
sensible split:

1. Instruction fetch, register read (300 ps)
2. ALU (200 ps)
3. Data access, register write (300 ps)

Clock Rate. Figure 4.27 shows the clock cycle time of the five-stage
pipeline is 200 ps, so the clock rate is 1/200 ps or 5 GHz. The worst case
stage for this three-stage pipeline is 300 ps, so the clock rate is 1/300 ps or
3.33 GHz.

Register Write/Read Data Hazards. As the pipeline drawing previously
shows, there is still a write/read hazard. The first instruction does not write
the data to register the third stage, but the next instruction needs the new
value at the beginning of its second stage. The forwarding solution in
Section 4.8 works fine for the three-stage pipeline, as the ALU result of the
prior instruction is ready before the beginning of its second stage.

Load-Use Data Hazards. Even with three stages, we have to stall one
clock cycle for a load use hazard as in Section 4.8. The data is not available
until the third stage of the load instruction, but the following instruction
needs the new data at the beginning of its second stage.

Control Hazards. This hazard is where the three stage pipeline shines.
We can use the same optimization as in Section 4.9 to calculate the branch
address and compare registers for equality before the ALU stage as we did
in Figure 4.62. That calculation is performed before the instruction fetch of
the following instruction, so early branch logic resolves the control hazard
with no pipeline penalty.

CPI. The average clocks per instruction will shrink (get better) with a
three-stage pipeline for a couple of reasons:

■ Given the clock cycle is longer, it will take fewer clock cycles to
access DRAM memory, which will affect the CPI when we have a

miss in the cache (see Chapter 5).
■ Branches will always execute in one clock cycle, whereas any
software and hardware scheme to accelerate branches with five stages
will fail some of the time, increasing the effective CPI.
■ Our clock cycle time is longer for the ALU, which may allow some
complex operations that might take more than one clock cycle in the
five-stage pipeline. For example, integers that multiply or divide
might need fewer of these longer clock cycles than does the five-stage
pipeline.

4.19 Exercises

4.1 Consider the following instruction:
Instruction: and rd, rsl, rs2
Interpretation: Reg[rd] = Reg[rs1] AND Reg[rs2]
4.1.1 [5] <§4.3> What are the values of control signals
generated by the control in Figure 4.10 for this instruction?
4.1.2 [5] <§4.3> Which resources (blocks) perform a useful
function for this instruction?
4.1.3 [10] <§4.3> Which resources (blocks) produce no output
for this instruction? Which resources produce output that is not
used?

4.2 [10] <§4.4> Explain each of the “don’t cares” in Figure 4.18.
4.3 Consider the following instruction mix:

R-type I-type (non-lw) Load Store Branch Jump
24% 28% 25% 10% 11% 2%

4.3.1 [5] <§4.4> What fraction of all instructions use data
memory?
4.3.2 [5] <§4.4> What fraction of all instructions use instruction
memory?

4.3.3 [5] <§4.4> What fraction of all instructions use the sign
extend?
4.3.4 [5] <§4.4> What is the sign extend doing during cycles in
which its output is not needed?

4.4 When silicon chips are fabricated, defects in materials (e.g.,
silicon) and manufacturing errors can result in defective circuits. A
very common defect is for one signal wire to get “broken” and always
register a logical 0. This is often called a “stuck-at-0” fault.

4.4.1 [5] <§4.4> Which instructions fail to operate correctly if
the MemToReg wire is stuck at 0?
4.4.2 [5] <§4.4> Which instructions fail to operate correctly if
the ALUSrc wire is stuck at 0?

4.5 In this exercise, we examine in detail how an instruction is
executed in a single-cycle datapath. Problems in this exercise refer to
a clock cycle in which the processor fetches the following instruction
word: 0x00c6ba23.

4.5.1 [10] <§4.4> What are the values of the ALU control unit’s
inputs for this instruction?
4.5.2 [5] <§4.4> What is the new PC address after this
instruction is executed? Highlight the path through which this
value is determined.
4.5.3 [10] <§4.4> For each mux, show the values of its inputs
and outputs during the execution of this instruction. List values
that are register outputs at Reg [xn].
4.5.4 [10] <§4.4> What are the input values for the ALU and the
two add units?
4.5.5 [10] <§4.4> What are the values of all inputs for the
registers unit?

4.6 Section 4.4 does not discuss I-type instructions like addi or andi.
4.6.1 [5] <§4.4> What additional logic blocks, if any, are needed
to add I-type instructions to the CPU shown in Figure 4.21?
Add any necessary logic blocks to Figure 4.21 and explain their
purpose.
4.6.2 [10] <§4.4> List the values of the signals generated by the
control unit for addi. Explain the reasoning for any “don’t care”

control signals.
4.7 Problems in this exercise assume that the logic blocks used to
implement a processor’s datapath have the following latencies:

I-
Mem
/ D-
Mem

Register
File Mux ALU Adder Singlegate Register

Read
Register
Setup

Sign
extend Control

250ps 150ps 25ps 200ps 150ps 5ps 30ps 20ps 50ps 50ps

“Register read” is the time needed after the rising clock edge for the
new register value to appear on the output. This value applies to the
PC only. “Register setup” is the amount of time a register’s data input
must be stable before the rising edge of the clock. This value applies
to both the PC and Register File.

4.7.1 [5] <§4.4> What is the latency of an R-type instruction
(i.e., how long must the clock period be to ensure that this
instruction works correctly)?
4.7.2 [10] <§4.4> What is the latency of lw? (Check your
answer carefully. Many students place extra muxes on the
critical path.)
4.7.3 [10] <§4.4> What is the latency of sw? (Check your
answer carefully. Many students place extra muxes on the
critical path.)
4.7.4 [5] <§4.4> What is the latency of beq?
4.7.5 [5] <§4.4> What is the latency of an arithmetic, logical, or
shift I-type (non-load) instruction?
4.7.6 [5] <§4.4> What is the minimum clock period for this
CPU?

4.8 [10] <§4.4> Suppose you could build a CPU where the clock cycle
time was different for each instruction. What would the speedup of
this new CPU be over the CPU presented in Figure 4.21 given the
instruction mix below?

R-type/I-type (non-lw) lw sw beq
52% 25% 11% 12%

4.9 Consider the addition of a multiplier to the CPU shown in Figure
4.21. This addition will add 300 ps to the latency of the ALU, but will
reduce the number of instructions by 5% (because there will no longer
be a need to emulate the multiply instruction).

4.9.1 [5] <§4.4> What is the clock cycle time with and without
this improvement?
4.9.2 [10] <§4.4> What is the speedup achieved by adding this
improvement?
4.9.3 [10] <§4.4> What is the slowest the new ALU can be and
still result in improved performance?

4.10 When processor designers consider a possible improvement to
the processor datapath, the decision usually depends on the
cost/performance trade-off. In the following three problems, assume
that we are beginning with the datapath from Figure 4.21, the
latencies from Exercise 4.7, and the following costs:

I-
Mem

Register
File Mux ALU Adder D-

Mem
Single
Register

Sign
extend

Sign
gate Control

1000 200 10 100 30 2000 5 100 1 500

Suppose doubling the number of general purpose registers from 32 to
64 would reduce the number of lw and sw instruction executed by
12%, but increase the latency of the register file from 150 ps to 160 ps
and double the cost from 200 to 400. (Use the instruction mix from
Exercise 4.8 and ignore the other effects on the ISA discussed in
Exercise 2.18.)

4.10.1 [5] <§4.4> What is the speedup achieved by adding this
improvement?
4.10.2 [10] <§4.4> Compare the change in performance to the
change in cost.
4.10.3 [10] <§4.4> Given the cost/performance ratios you just
calculated, describe a situation where it makes sense to add
more registers and describe a situation where it doesn’t make
sense to add more registers.

4.11 Examine the difficulty of adding a proposed lwi.drd, rsl, rs2
(“Load With Increment”) instruction to MIPS.
Interpretation: Reg[rd] = Mem[Reg[rs1] + Reg[rs2]]

4.11.1 [5] <§4.4> Which new functional blocks (if any) do we
need for this instruction?
4.11.2 [5] <§4.4> Which existing functional blocks (if any)
require modification?
4.11.3 [5] <§4.4> Which new data paths (if any) do we need for
this instruction?
4.11.4 [5] <§4.4> What new signals do we need (if any) from
the control unit to support this instruction?

4.12 Examine the difficulty of adding a proposed swap rs, rt
instruction to MIPS.
Interpretation: Reg[rt] = Reg[rs]; Reg[rs] = Reg[rt]

4.12.1 [5] <§4.4> Which new functional blocks (if any) do we
need for this instruction?
4.12.2 [10] <§4.4> Which existing functional blocks (if any)
require modification?
4.12.3 [5] <§4.4> What new data paths do we need (if any) to
support this instruction?
4.12.4 [5] <§4.4> What new signals do we need (if any) from
the control unit to support this instruction?
4.12.5 [5] <§4.4> Modify Figure 4.21 to demonstrate an
implementation of this new instruction.

4.13 Examine the difficulty of adding a proposed ss rt, rs, imm
(Store Sum) instruction to MIPS.
Interpretation: Mem[Reg[rt]=Reg[rs]+immediate

4.13.1 [10] <§4.4> Which new functional blocks (if any) do we
need for this instruction?
4.13.2 [10] <§4.4> Which existing functional blocks (ifany)
require modification?
4.13.3 [5] <§4.4> What new data paths do we need (if any) to
support this instruction?
4.13.4 [5] <§4.4> What new signals do we need (if any) from
the control unit to support this instruction?
4.13.5 [5] <§4.4> Modify Figure 4.21 to demonstrate an
implementation of this new instruction.

4.14 [5] <§4.4> For which instructions (if any) is the Imm Gen block
on the critical path?
4.15 lw is the instruction with the longest latency on the CPU from
Section 4.4. If we modified lw and sw so that there was no offset (i.e.,
the address to be loaded from/stored to must be calculated and placed
in rs before calling lw/sw), then no instruction would use both the
ALU and Data memory. This would allow us to reduce the clock cycle
time. However, it would also increase the number of instructions,
because many ld and sd instructions would need to be replaced with
lw/add or sw/add combinations.

4.15.1 [5] <§4.4> What would the new clock cycle time be?
4.15.2 [10] <§4.4> Would a program with the instruction mix
presented in Exercise 4.7 run faster or slower on this new CPU?
By how much? (For simplicity, assume every lw and sw
instruction is replaced with a sequence of two instructions.)
4.15.3 [5] <§4.4> What is the primary factor that influences
whether a program will run faster or slower on the new CPU?
4.15.4 [5] <§4.4> Do you consider the original CPU (as shown
in Figure 4.21) a better overall design; or do you consider the
new CPU a better overall design? Why?

4.16 In this exercise, we examine how pipelining affects the clock
cycle time of the processor. Problems in this exercise assume that
individual stages of the datapath have the following latencies:

IF ID EX MEM WB
250ps 350ps 150ps 300ps 200ps

Also, assume that instructions executed by the processor are broken
down as follows:

ALU/Logic Jump/Branch Load Store
45% 20% 20% 15%

4.16.1 [5] <§4.6> What is the clock cycle time in a pipelined
and non-pipelined processor?
4.16.2 [10] <§4.6> What is the total latency of an lw instruction
in a pipelined and non-pipelined processor?
4.16.3 [10] <§4.6> If we can split one stage of the pipelined
datapath into two new stages, each with half the latency of the
original stage, which stage would you split and what is the new
clock cycle time of the processor?
4.16.4 [10] <§4.6> Assuming there are no stalls or hazards,
what is the utilization of the data memory?
4.16.5 [10] <§4.6> Assuming there are no stalls or hazards,
what is the utilization of the write-register port of the
“Registers” unit?

4.17 [10] <§4.6> What is the minimum number of cycles needed to
completely execute n instructions on a CPU with a k stage pipeline?
Justify your formula.
4.18 [5] <§4.6> Assume that $s0 is initialized to 11 and $s1 is
initialized to 22. Suppose you executed the code below on a version
of the pipeline from Section 4.6 that does not handle data hazards
(i.e., the programmer is responsible for addressing data hazards by

inserting NOP instructions where necessary). What would the final
values of registers $s2 and $s3 be?

addi $s0, $s1, 5
add $s2, $s0, $s1
addi $s3, $s0, 15

4.19 [10] <§4.6> Assume that $s0 is initialized to 11 and $s1 is
initialized to 22. Suppose you executed the code below on a version
of the pipeline from Section 4.6 that does not handle data hazards
(i.e., the programmer is responsible for addressing data hazards by
inserting NOP instructions where necessary). What would the final
values of register $s4 be? Assume the register file is written at the
beginning of the cycle and read at the end of a cycle. Therefore, an ID
stage will return the results of a WB state occurring during the same
cycle. See Section 4.8 and Figure 4.51 for details.

addi $s0, $s1, 5
add $s2, $s0, $s1
addi $s3, $s0, 15
add $s4, $s0, $s0

4.20 [5] <§4.6> Add NOP instructions to the code below so that it will
run correctly on a pipeline that does not handle data hazards.

addi $s0, $s1, 5
add $s2, $s0, $s1
addi $s3, $s0, 15
add $s4, $s2, $s1

4.21 Consider a version of the pipeline from Section 4.6 that does not
handle data hazards (i.e., the programmer is responsible for
addressing data hazards by inserting NOP instructions where
necessary). Suppose that (after optimization) a typical n-instruction
program requires an additional 4*n NOP instructions to correctly
handle data hazards.

4.21.1 [5] <§4.6> Suppose that the cycle time of this pipeline
without forwarding is 250 ps. Suppose also that adding
forwarding hardware will reduce the number of NOPs from .4*n
to .05*n, but increase the cycle time to 300 ps. What is the

speedup of this new pipeline compared to the one without
forwarding?
4.21.2 [10] <§4.6> Different programs will require different
amounts of NOPs. How many NOPs (as a percentage of code
instructions) can remain in the typical program before that
program runs slower on the pipeline with forwarding?
4.21.3 [10] <§4.6> Repeat 4.21.2; however, this time let x
represent the number of NOP instructions relative to n. (In 4.21.2,
x was equal to .4.) Your answer will be with respect to x.
4.21.4 [10] <§4.6> Can a program with only .07 5*n NOPs
possibly run faster on the pipeline with forwarding? Explain
why or why not.
4.21.5 [10] <§4.6> At minimum, how many NOPs (as a
percentage of code instructions) must a program have before it
can possibly run faster on the pipeline with forwarding?

4.22 [5] <§4.6> Consider the fragment of MIPS assembly below:
sd $s5, 12($s3)
Id $s5, 8($s3)
sub $s4, $s2, $s1
beqz $s4, label
add $s2, $s0, $s1
sub $s2, $s6, $s1

Suppose we modify the pipeline so that it has only one memory (that
handles both instructions and data). In this case, there will be a
structural hazard every time a program needs to fetch an instruction
during the same cycle in which another instruction accesses data.

4.22.1 [5] <§4.6> Draw a pipeline diagram to show were the
code above will stall.
4.22.2 [5] <§4.6> In general, is it possible to reduce the number
of stalls/NOPs resulting from this structural hazard by reordering
code?
4.22.3 [5] <§4.6> Must this structural hazard be handled in
hardware? We have seen that data hazards can be eliminated by

adding NOPs to the code. Can you do the same with this
structural hazard? If so, explain how. If not, explain why not.
4.22.4 [5] <§4.6> Approximately how many stalls would you
expect this structural hazard to generate in a typical program?
(Use the instruction mix from Exercise 4.8.)

4.23 If we change load/store instructions to use a register (without an
offset) as the address, these instructions no longer need to use the
ALU. (See Exercise 4.15.) As a result, the MEM and EX stages can
be overlapped and the pipeline has only four stages.

4.23.1 [10] <§4.6> How will the reduction in pipeline depth
affect the cycle time?
4.23.2 [5] <§4.6> How might this change improve the
performance of the pipeline?
4.23.3 [5] <§4.6> How might this change degrade the
performance of the pipeline?

4.24 [10] <§4.8> Which of the two pipeline diagrams below better
describes the operation of the pipeline’s hazard detection unit? Why?
Choice 1:

ld x11, 0(x12): IF ID EX ME WB
add x13, x11, x14: IF ID EX..ME WB
or x15, x16, x17: IF ID..EX ME WB

Choice 2:

ld x11, 0(x12): IF ID EX ME WB
add x13, x11, x14: IF ID..EX ME WB
or x15, x16, x17: IF..ID EX ME WB

4.25 Consider the following loop.
LOOP: ld $s0, 0($s3)
 ld $s1, 8($s3)
 add $s2, $s0, $s1
 addi $s3, $s3, -16
 bnez $s2, LOOP

Assume that perfect branch prediction is used (no stalls due to control
hazards), that there are no delay slots, that the pipeline has full

forwarding support, and that branches are resolved in the EX (as
opposed to the ID) stage.

4.25.1 [10] <§4.8> Show a pipeline execution diagram for the
first two iterations of this loop.
4.25.2 [10] <§4.8> Mark pipeline stages that do not perform
useful work. How often while the pipeline is full do we have a
cycle in which all five pipeline stages are doing useful work?
(Begin with the cycle during which the addi is in the IF stage.
End with the cycle during which the bnez is in the IF stage.)

4.26 This exercise is intended to help you understand the
cost/complexity/performance trade-offs of forwarding in a pipelined
processor. Problems in this exercise refer to pipelined datapaths from
Figure 4.53. These problems assume that, of all the instructions
executed in a processor, the following fraction of these instructions
has a particular type of RAW data dependence. The type of RAW data
dependence is identified by the stage that produces the result (EX or
MEM) and the next instruction that consumes the result (1st
instruction that follows the one that produces the result, 2nd
instruction that follows, or both). We assume that the register write is
done in the first half of the clock cycle and that register reads are done
in the second half of the cycle, so “EX to 3rd” and “MEM to 3rd”
dependences are not counted because they cannot result in data
hazards. We also assume that branches are resolved in the EX stage
(as opposed to the ID stage), and that the CPI of the processor is 1 if
there are no data hazards.

EX to 1st
Only

MEM to 1st
Only

EX to 2nd
Only

MEM to 2nd
Only

EX to 1st and EX to
2nd

5% 20% 5% 10% 10%

Assume the following latencies for individual pipeline stages. For the

EX stage, latencies are given separately for a processor without
forwarding and for a processor with different kinds of forwarding.

IF ID EX (no
FW)

EX (full
FW)

EX (FW from
EX/ MEM only)

EX (FW from
MEM/ WB only) MEM WB

120ps 100ps 110ps 130ps 120ps 120ps 120ps 100ps

4.26.1 [5] <§4.8> For each RAW dependency listed above, give
a sequence of at least three assembly statements that exhibits
that dependency.
4.26.2 [5] <§4.8> For each RAW dependency above, how many
NOPs would need to be inserted to allow your code from 4.26.1
to run correctly on a pipeline with no forwarding or hazard
detection? Show where the NOPs could be inserted.
4.26.3 [10] <§4.8> Analyzing each instruction independently
will over-count the number of NOPsneeded to run a program on
a pipeline with no forwarding or hazard detection. Write a
sequence of three assembly instructions so that, when you
consider each instruction in the sequence independently, the
sum of the stalls is larger than the number of stalls the sequence
actually needs to avoid data hazards.
4.26.4 [5] <§4.8> Assuming no other hazards, what is the CPI
for the program described by the table above when run on a
pipeline with no forwarding? What percent of cycles are stalls?
(For simplicity, assume that all necessary cases are listed above
and can be treated independently.)
4.26.5 [5] <§4.8> What is the CPI if we use full forwarding
(forward all results that can be forwarded)? What percent of
cycles are stalls?
4.26.6 [10] <§4.8> Let us assume that we cannot afford to have
three-input multiplexors that are needed for full forwarding. We
have to decide if it is better to forward only from the EX/MEM
pipeline register (next-cycle forwarding) or only from the

MEM/WB pipeline register (two-cycle forwarding). What is the
CPI for each option?
4.26.7 [5] <§4.8> For the given hazard probabilities and
pipeline stage latencies, what is the speedup achieved by each
type of forwarding (EX/MEM, MEM/WB, for full) as compared
to a pipeline that has no forwarding?
4.26.8 [5] <§4.8> What would be the additional speedup
(relative to the fastest processor from 4.26.7) be if we added
“time-travel” forwarding that eliminates all data hazards?
Assume that the yet-to-be-invented time-travel circuitry adds
100 ps to the latency of the full-forwarding EX stage.
4.26.9 [5] <§4.8> The table of hazard types has separate entries
for “EX to 1st” and “EX to 1st and EX to 2nd”. Why is there no
entry for “MEM to 1st and MEM to 2nd”?

4.27 Problems in this exercise refer to the following sequence of
instructions, and assume that it is executed on a five-stage pipelined
datapath:

add $s3, $s1, $s0
lw $s2, 4($s3)
lw $s1, 0($s4)
or $s2, $s3, $s2
sw $s2, 0($s3)
4.27.1 [5] <§4.8> If there is no forwarding or hazard detection,
insert NOPs to ensure correct execution.
4.27.2 [10] <§4.8> Now, change and/or rearrange the code to
minimize the number of NOPs needed. You can assume register
$t0 can be used to hold temporary values in your modified
code.
4.27.3 [10] <§4> If the processor has forwarding, but we forgot
to implement the hazard detection unit, what happens when the
original code executes?
4.27.4 [20] <§4.8> If there is forwarding, for the first seven
cycles during the execution of this code, specify which signals
are asserted in each cycle by hazard detection and forwarding
units in Figure 4.59.

4.27.5 [10] <§4.8> If there is no forwarding, what new input and
output signals do we need for the hazard detection unit in Figure
4.59? Using this instruction sequence as an example, explain
why each signal is needed.
4.27.6 [20] <§4.8> For the new hazard detection unit from
4.26.5, specify which output signals it asserts in each of the first
five cycles during the execution of this code.

4.28 The importance of having a good branch predictor depends on
how often conditional branches are executed. Together with branch
predictor accuracy, this will determine how much time is spent
stalling due to mispredicted branches. In this exercise, assume that the
breakdown of dynamic instructions into various instruction categories
is as follows:

R-type beqz/bnez jal lw sw
40% 25% 5% 25% 5%

Also, assume the following branch predictor accuracies:

Always-Taken Always-Not-Taken 2-Bit
45% 55% 85%

4.28.1 [10] <§4.9> Stall cycles due to mispredicted branches
increase the CPI. What is the extra CPI due to mispredicted
branches with the always-taken predictor? Assume that branch
outcomes are determined in the ID stage and applied in the EX
stage that there are no data hazards, and that no delay slots are
used.
4.28.2 [10] <§4.9> Repeat 4.28.1 for the “always-not-taken”
predictor.
4.28.3 [10] <§4.9> Repeat 4.28.1 for the 2-bit predictor.

4.28.4 [10] <§4.9> With the 2-bit predictor, what speedup would
be achieved if we could convert half of the branch instructions
to some ALU instruction? Assume that correctly and incorrectly
predicted instructions have the same chance of being replaced.
4.28.5 [10] <§4.9> With the 2-bit predictor, what speedup would
be achieved if we could convert half of the branch instructions
in a way that replaced each branch instruction with two ALU
instructions? Assume that correctly and incorrectly predicted
instructions have the same chance of being replaced.
4.28.6 [10] <§4.9> Some branch instructions are much more
predictable than others. If we knowthat 80% of all executed
branch instructions are easy-to-predict loop-back branches that
are always predicted correctly, what is the accuracy of the 2-bit
predictor on the remaining 20% of the branch instructions?

4.29 This exercise examines the accuracy of various branch predictors
for the following repeating pattern (e.g., in a loop) of branch
outcomes: T, NT, T, T, NT.

4.29.1 [5] <§4.9> What is the accuracy of always-taken and
always-not-taken predictors for this sequence of branch
outcomes?
4.29.2 [5] <§4.9> What is the accuracy of the 2-bit predictor for
the first four branches in this pattern, assuming that the
predictor starts off in the bottom left state from Figure 4.61
(predict not taken)?
4.29.3 [10] <§4.9> What is the accuracy of the 2-bit predictor if
this pattern is repeated forever?
4.29.4 [30] <§4.9> Design a predictor that would achieve a
perfect accuracy if this pattern is repeated forever. You predictor
should be a sequential circuit with one output that provides a
prediction (1 for taken, 0 for not taken) and no inputs other than
the clock and the control signal that indicates that the instruction
is a conditional branch.
4.29.5 [10] <§4.9> What is the accuracy of your predictor from
4.29.4 if it is given a repeating pattern that is the exact opposite
of this one?

4.29.6 [20] <§4.9> Repeat 4.29.4, but now your predictor should
be able to eventually (after a warm-up period during which it
can make wrong predictions) start perfectly predicting both this
pattern and its opposite. Your predictor should have an input
that tells it what the real outcome was. Hint: this input lets your
predictor determine which of the two repeating patterns it is
given.

4.30 This exercise explores how exception handling affects pipeline
design. The first three problems in this exercise refer to the following
two instructions:

Instruction 1 Instruction 2
beqz $s0, LABEL ld $s0, 0($s1)

4.30.1 [5] <§4.10> Which exceptions can each of these
instructions trigger? For each of these exceptions, specify the
pipeline stage in which it is detected.
4.30.2 [10] <§4.10> If there is a separate handler address for
each exception, show how the pipeline organization must be
changed to be able to handle this exception. You can assume
that the addresses of these handlers are known when the
processor is designed.
4.30.3 [10] <§4.10> If the second instruction is fetched
immediately after the first instruction, describe what happens in
the pipeline when the first instruction causes the first exception
you listed in Exercise 4.30.1. Show the pipeline execution
diagram from the time the first instruction is fetched until the
time the first instruction of the exception handler is completed.
4.30.4 [20] <§4.10> In vectored exception handling, the table of
exception handler addresses is in data memory at a known
(fixed) address. Change the pipeline to implement this
exception handling mechanism. Repeat Exercise 4.30.3 using
this modified pipeline and vectored exception handling.
4.30.5 [15] <§4.10> We want to emulate vectored exception
handling (described in Exercise 4.30.4) on a machine that has
only one fixed handler address. Write the code that should be at

that fixed address. Hint: this code should identify the exception,
get the right address from the exception vector table, and
transfer execution to that handler.

4.31 In this exercise we compare the performance of 1-issue and 2-
issue processors, taking into account program transformations that can
be made to optimize for 2-issue execution. Problems in this exercise
refer to the following loop (written in C):

for(i=0;i!=j;i+=2)
 b[i]=a[i]-a[i+1];

A compiler doing little or no optimization might produce the
following MIPS assembly code:

li $s0, 0
jal ENT
TOP: sll $t0, $s0, 3
 add $t1, $s2, $t0
 lw $t2, 0($t1)
 lw $t3, 8($t1)
 sub $t4, $t2, $t3
 add $t5, $s3, $t0
 sw $t4, 0($t5)
 addi $s0, $s0, 2
ENT: bne $s0, $s1, TOP

The code above uses the following registers:

i j a b Temporary values
$s0 $s1 $s2 $s3 $t0-$t5

Assume the two-issue, statically scheduled processor for this exercise
has the following properties:

1 One instruction must be a memory operation; the other must be
an arithmetic/logic instruction or a branch.

2 The processor has all possible forwarding paths between stages
(including paths to the ID stage for branch resolution).

3 The processor has perfect branch prediction.
4 Two instruction may not issue together in a packet if one depends

on the other. (See page 336.)
5 If a stall is necessary, both instructions in the issue packet must

stall. (See page 336.)

As you complete these exercises, notice how much effort goes into
generating code that will produce a near-optimal speedup.

4.31.1 [30] <§4.11> Draw a pipeline diagram showing how
MIPS code given above executes on the two-issue processor.
Assume that the loop exits after two iterations.
4.31.2 [10] <§4.11> What is the speedup of going from a one-
issue to a two- issue processor? (Assume the loop runs
thousands of iterations.)
4.31.3 [10] <§4.11> Rearrange/rewrite the MIPS code given
above to achieve better performance on the one-issue processor.
Hint: Use the instruction “beqz $s1,DONE” to skip the loop
entirely if j = 0.
4.31.4 [20] <§4.11> Rearrange/rewrite the MIPS code given
above to achieve better performance on the two-issue processor.
(Do not unroll the loop, however.)
4.31.5 [30] <§4.11> Repeat Exercise 4.31.1, but this time use
your optimized code from Exercise 4.31.4.
4.31.6 [10] <§4.11> What is the speedup of going from a one-
issue processor to a two-issue processor when running the
optimized code from Exercises 4.31.3 and 4.31.4.
4.31.7 [10] <§4.11> Unroll the MIPS code from Exercise 4.31.3
so that each iteration of the unrolled loop handles two iterations
of the original loop. Then, rearrange/rewrite your unrolled code
to achieve better performance on the one- issue processor. You
may assume that j is a multiple of 4.

4.31.8 [20] <§4.11> Unroll the MIPS code from Exercise 4.31.4
so that each iteration of the unrolled loop handles two iterations
of the original loop. Then, rearrange/rewrite your unrolled code
to achieve better performance on the two- issue processor. You
may assume that j is a multiple of 4. (Hint: Re-organize the loop
so that some calculations appear both outside the loop and at the
end of the loop. You may assume that the values in temporary
registers are not needed after the loop.)
4.31.9 [10] <§4.11> What is the speedup of going from a one-
issue processor to a two-issue processor when running the
unrolled, optimized code from Exercises 4.31.7 and 4.31.8?
4.31.10 [30] <§4.11> Repeat Exercises 4.31.8 and 4.31.9, but
this time assume the two-issue processor can run two
arithmetic/logic instructions together. (In other words, the first
instruction in a packet can be any type of instruction, but the
second must be an arithmetic or logic instruction. Two memory
operations cannot be scheduled at the same time.)

4.32 This exercise explores energy efficiency and its relationship with
performance. Problems in this exercise assume the following energy
consumption for activity in Instruction memory, Registers, and Data
memory. You can assume that the other components of the datapath
consume a negligible amount of energy. (“Register Read” and
“Register Write” refer to the register file only.)

I-Mem 1 Register Read Register Write D-Mem Read D-Mem Write
140pJ 70pJ 60pJ 140pJ 120pJ

Assume that components in the datapath have the following latencies.
You can assume that the other components of the datapath have
negligible latencies.

I-Mem Control Register Read or Write ALU D-Mem Read or Write
200ps 150ps 90ps 90ps 250ps

4.32.1 [5] <§§4.3, 4.7, 4.15> How much energy is spent to
execute an add instruction in a single-cycle design and in the
five-stage pipelined design?
4.32.2 [10] <§§4.7, 4.15> What is the worst-case MIPS
instruction in terms of energy consumption? What is the energy
spent to execute it?
4.32.3 [10] <§§4.7, 4.15> If energy reduction is paramount, how
would you change the pipelined design? What is the percentage
reduction in the energy spent by an ld instruction after this
change?
4.32.4 [10] <§§4.7, 4.15> What other instructions can
potentially benefit from the change discussed in Exercise
4.32.3?
4.32.5 [10] <§§4.7, 4.15> How do your changes from Exercise
4.32.3 affect the performance of a pipelined CPU?
4.32.6 [10] <§§4.7, 4.15> We can eliminate the MemRead control
signal and have the data memory be readm every cycle, i.e., we
can permanently have MemRead=1. Explain why the processor
still functions correctly after this change. If 25% of instructions
are loads, what is the effect of this change on clock frequency
and energy consumption?

4.33 When silicon chips are fabricated, defects in materials (e.g.,
silicon) and manufacturing errors can result in defective circuits. A
very common defect is for one wire to affect the signal in another.
This is called a “cross-talk fault”. A special class of cross-talk faults is
when a signal is connected to a wire that has a constant logical value
(e.g., a power supply wire). These faults, where the affected signal
always has a logical value of either 0 or 1 are called “stuck-at-0” or
“stuck- at-1” faults. The following problems refer to bit 0 of the Write
Register input on the register file in Figure 4.21.

4.33.1 [10] <§§4.3, 4.4> Let us assume that processor testing is
done by (1) filling the PC, registers, and data and instruction
memories with some values (you can choose which values), (2)
letting a single instruction execute, then (3) reading the PC,
memories, and registers. These values are then examined to
determine if a particular fault is present. Can you design a test
(values for PC, memories, and registers) that would determine if
there is a stuck-at-0 fault on this signal?
4.33.2 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1 for a stuck-at-1
fault. Can you use a single test for both stuck-at-0 and stuck-at-
1? If yes, explain how; if no, explain why not.
4.33.3 [10] <§§4.3, 4.4> If we know that the processor has a
stuck-at-1 fault on this signal, is the processor still usable? To
be usable, we must be able to convert any program that executes
on a normal MIPS processor into a program that works on this
processor. You can assume that there is enough free instruction
memory and data memory to let you make the program longer
and store additional data.
4.33.4 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1; but now the
fault to test for is whether the MemRead control signal becomes 0
if the branch control signal is 0, no fault otherwise.
4.33.5 [10] <§§4.3, 4.4> Repeat Exercise 4.33.1; but now the
fault to test for is whether the MemRead control signal becomes 1
if RegRd control signal is 1, no fault otherwise. Hint: This
problem requires knowledge of operating systems. Consider
what causes segmentation faults.

Answers to Check Yourself
§4.1, page 260: 3 of 5: Control, Datapath, Memory. Input and Output are
missing.

§4.2, page 263: false. Edge-triggered state elements make
simultaneous reading and writing both possible and unambiguous.

§4.3, page 269: I. a. II. c.
§4.4, page 284: Yes, Branch and ALUOp0 are identical. In addition,

MemtoReg and RegDst are inverses of one another. You don’t need an

inverter; simply use the other signal and flip the order of the inputs to the
multiplexor!

§4.5, page 4.5-22: 1. False. 2. Maybe; If the signal PCSource[0] is
always set to zero when it is a don’t care (which is most states), then it is
identical to the PCWriteCond.

§4.6, page 297: 1. Stall on the lw result. 2. Bypass the first add result
written into $t1. 3. No stall or bypass required.

§4.7, page 310: Statements 2 and 4 are correct; the rest are incorrect.
§4.9, page 336: 1. Predict not taken. 2. Predict taken. 3. Dynamic

prediction.
§4.10, page 344: The first instruction, since it is logically executed

before the others.
§4.11, page 357: 1. Both. 2. Both. 3. Software. 4. Hardware. 5.

Hardware. 6. Hardware. 7. Both. 8. Hardware. 9. Both.
§4.13, page 368: First two are false and the last two are true.

