
3

Arithmetic for Computers

Numerical precision is the very soul of science.

Sir D’arcy Wentworth ThompsonOn Growth and Form, 1917

OUTLINE

3.1 Introduction 188

3.2 Addition and Subtraction 188

3.3 Multiplication 193

3.4 Division 199

3.5 Floating Point 206

3.6 Parallelism and Computer Arithmetic: Subword
Parallelism 232

3.7 Real Stuff: Streaming SIMD Extensions and
Advanced Vector Extensions in x86 234

3.8 Going Faster: Subword Parallelism and Matrix
Multiply 235

3.9 Fallacies and Pitfalls 237

3.10 Concluding Remarks 241

 3.11 Historical Perspective and Further Reading 245

3.12 Self Study 245

3.13 Exercises 248

The Five Classic Components of a Computer

3.1 Introduction
Computer words are composed of bits; thus, words can be represented as
binary numbers. Chapter 2 shows that integers can be represented either in
decimal or binary form, but what about the other numbers that commonly
occur? For example:

■ What about fractions and other real numbers?
■ What happens if an operation creates a number bigger than can be
represented?

■ And underlying these questions is a mystery: How does hardware
really multiply or divide numbers?

The goal of this chapter is to unravel these mysteries including
representation of real numbers, arithmetic algorithms, hardware that follows
these algorithms, and the implications of all this for instruction sets. These
insights may explain quirks that you have already encountered with
computers. Moreover, we show how to use this knowledge to make
arithmetic-intensive programs go much faster.

3.2 Addition and Subtraction
Subtraction: Addition’s Tricky Pal

No. 10, Top Ten Courses for Athletes at a Football Factory, David Letterman et al., Book of Top Ten
Lists, 1990

Addition is just what you would expect in computers. Digits are added bit
by bit from right to left, with carries passed to the next digit to the left, just
as you would do by hand. Subtraction uses addition: the appropriate
operand is simply negated before being added.

Binary Addition and Subtraction

Example
Let’s try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in
binary.

The 4 bits to the right have all the action; Figure 3.1 shows the sums
and carries. The carries are shown in parentheses, with the arrows
showing how they are passed.

FIGURE 3.1 Binary addition, showing carries
from right to left.
The rightmost bit adds 1 to 0, resulting in the
sum of this bit being 1 and the carry out from
this bit being 0. Hence, the operation for the
second digit to the right is 0 + 1 + 1. This
generates a 0 for this sum bit and a carry out of
1. The third digit is the sum of 1 + 1 + 1,
resulting in a carry out of 1 and a sum bit of 1.
The fourth bit is 1 + 0 + 0, yielding a 1 sum and
no carry.

Answer
Subtracting 6ten from 7ten can be done directly:

or via addition using the two’s complement representation of −6:

Recall that overflow occurs when the result from an operation cannot be
represented with the available hardware, in this case a 32-bit word. When
can overflow occur in addition? When adding operands with different signs,
overflow cannot occur. The reason is the sum must be no larger than one of
the operands. For example, −10 + 4 = −6. Since the operands fit in 32 bits
and the sum is no larger than an operand, the sum must fit in 32 bits as well.
Therefore, no overflow can occur when adding positive and negative
operands.

There are similar restrictions to the occurrence of overflow during
subtract, but it’s just the opposite principle: when the signs of the operands
are the same, overflow cannot occur. To see this, remember that c − a = c +
(−a) because we subtract by negating the second operand and then add.
Therefore, when we subtract operands of the same sign we end up by
adding operands of different signs. From the prior paragraph, we know that
overflow cannot occur in this case either.

Knowing when overflow cannot occur in addition and subtraction is all
well and good, but how do we detect it when it does occur? Clearly, adding
or subtracting two 32-bit numbers can yield a result that needs 33 bits to be
fully expressed.

The lack of a 33rd bit means that when overflow occurs, the sign bit is
set with the value of the result instead of the proper sign of the result. Since
we need just one extra bit, only the sign bit can be wrong. Hence, overflow
occurs when adding two positive numbers and the sum is negative, or vice
versa. This spurious sum means a carry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from
a positive number and get a negative result, or when we subtract a positive
number from a negative number and get a positive result. Such a ridiculous
result means a borrow occurred from the sign bit. Figure 3.2 shows the
combination of operations, operands, and results that indicate an overflow.

FIGURE 3.2 Overflow conditions for addition and
subtraction.

We have just seen how to detect overflow for two’s complement numbers
in a computer. What about overflow with unsigned integers? Unsigned
integers are commonly used for memory addresses where overflows are
ignored.

The computer designer must therefore provide a way to ignore overflow
in some cases and to recognize it in others. The MIPS solution is to have
two kinds of arithmetic instructions to recognize the two choices:

■ Add (add), add immediate (addi), and subtract (sub) cause
exceptions on overflow.
■ Add unsigned (addu), add immediate unsigned (addiu), and subtract
unsigned (subu) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always
generate the unsigned versions of the arithmetic instructions addu, addiu,
and subu, no matter what the type of the variables. The MIPS Fortran
compilers, however, pick the appropriate arithmetic instructions, depending
on the type of the operands.

 Appendix B describes the hardware that performs addition and
subtraction, which is called an Arithmetic Logic Unit or ALU.

Arithmetic Logic Unit (ALU)
Hardware that performs addition, subtraction, and usually logical
operations such as AND and OR.

Elaboration
A constant source of confusion for addiu is its name and what happens to
its immediate field. The u stands for unsigned, which means addition
cannot cause an overflow exception. However, the 16-bit immediate field
is sign extended to 32 bits, just like addi, slti, and sltiu. Thus, the
immediate field is signed, even if the operation is “unsigned.”

Hardware/Software Interface
The computer designer must decide how to handle arithmetic overflows.
Although some languages like C and Java ignore integer overflow,
languages like Ada and Fortran require that the program be notified. The
programmer or the programming environment must then decide what to
do when overflow occurs.

exception
Also called interrupt on many computers. An unscheduled event that
disrupts program execution; used to detect overflow, for example.

MIPS detects overflow with an exception, also called an interrupt
on many computers. An exception or interrupt is essentially an
unscheduled procedure call. The address of the instruction that
overflowed is saved in a register, and the computer jumps to a predefined
address to invoke the appropriate routine for that exception. The
interrupted address is saved so that in some situations the program can
continue after corrective code is executed. (Section 4.10 covers
exceptions in more detail; Chapter 5 describes other situations where
exceptions and interrupts occur.) MIPS calls an exception that comes
from outside the processor an interrupt.

interrupt
An exception that comes from outside of the processor. (Some
architectures use the term interrupt for all exceptions.)

MIPS includes a register called the exception program counter (EPC)
to contain the address of the instruction that caused the exception. The
instruction move from system control (mfc0) is used to copy EPC into a
general-purpose register so that MIPS software has the option of
returning to the offending instruction via a jump register instruction after
the execution of the corrective code.

Summary
A major point of this section is that, independent of the representation, the
finite word size of computers means that arithmetic operations can create
results that are too large to fit in this fixed word size. It’s easy to detect
overflow in unsigned numbers, although these are almost always ignored
because programs don’t want to detect overflow for address arithmetic, the
most common use of natural numbers. Two’s complement presents a greater
challenge, yet some software systems require detection of overflow, so
today all computers have a way to detect it.

Check Yourself
Some programming languages allow two’s complement integer
arithmetic on variables declared byte and half, whereas MIPS only has
integer arithmetic operations on full words. As we recall from Chapter 2,
MIPS does have data transfer operations for bytes and halfwords. What
MIPS instructions should be generated for byte and halfword arithmetic
operations?

1. Load with lbu, lhu; arithmetic with add, sub, mult, div; then store
using sb, sh.

2. Load with lb, lh; arithmetic with add, sub, mult, div; then store
using sb, sh.

3. Load with lb, lh; arithmetic with add, sub, mult, div, using AND to
mask result to 8 or 16 bits after each operation; then store using sb,
sh.

Elaboration
One feature not generally found in general-purpose microprocessors is
saturating operations. Saturation means that when a calculation
overflows, the result is set to the largest positive number or most
negative number, rather than a modulo calculation as in two’s
complement arithmetic. Saturation is likely what you want for media
operations. For example, the volume knob on a radio set would be
frustrating if, as you turned it, the volume would get continuously louder
for a while and then immediately very soft. A knob with saturation would
stop at the highest volume no matter how far you turned it. Multimedia
extensions to standard instruction sets often offer saturating arithmetic.

Elaboration
MIPS can trap on overflow, but unlike many other computers, there is no
conditional branch to test overflow. A sequence of MIPS instructions can
discover overflow. For signed addition, the sequence is the following (see
the Elaboration on page 95 in Chapter 2 for a description of the xor
instruction):

For unsigned addition ($t0 = $t1 + $t2), the test is

Elaboration
In the preceding text, we said that you copy EPC into a register via mfc0
and then return to the interrupted code via jump register. This directive
leads to an interesting question: since you must first transfer EPC to a
register to use with jump register, how can jump register return to the
interrupted code and restore the original values of all registers? Either
you restore the old registers first, thereby destroying your return address
from EPC, which you placed in a register for use in jump register, or you
restore all registers but the one with the return address so that you can
jump—meaning an exception would result in changing that one register
at any time during program execution! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed
to reserve registers $k0 and $k1 for the operating system; these registers
are not restored on exceptions. Just as the MIPS compilers avoid using
register $at so that the assembler can use it as a temporary register (see
Hardware/Software Interface in Section 2.10), compilers also abstain
from using registers $k0 and $k1 to make them available for the
operating system. Exception routines place the return address in one of
these registers and then use jump register to restore the instruction
address.

Elaboration
The speed of addition is increased by determining the carry in to the
high-order bits sooner. There are a variety of schemes to anticipate the
carry so that the worst-case scenario is a function of the log2 of the
number of bits in the adder instead of the full number of adder bits.
These anticipatory signals are faster because they go through fewer gates

in sequence, but it takes many more gates to anticipate the proper carry.

The most popular is carry lookahead, which Section B.6 in
Appendix B describes.

3.3 Multiplication
Multiplication is vexation, Division is as bad; The rule of three doth
puzzle me, And practice drives me mad.

Anonymous, Elizabethan manuscript, 1570

Now that we have completed the explanation of addition and subtraction,
we are ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to
remind ourselves of the steps of multiplication and the names of the
operands. For reasons that will become clear shortly, we limit this decimal
example to using only the digits 0 and 1. Multiplying 1000ten by 1001ten:

The first operand is called the multiplicand and the second the multiplier.
The final result is called the product. As you may recall, the algorithm
learned in grammar school is to take the digits of the multiplier one at a
time from right to left, multiplying the multiplicand by the single digit of
the multiplier, and shifting the intermediate product one digit to the left of
the earlier intermediate products.

The first observation is that the number of digits in the product is
considerably larger than the number in either the multiplicand or the
multiplier. In fact, if we ignore the sign bits, the length of the multiplication
of an n-bit multiplicand and an m-bit multiplier is a product that is n + m
bits long. That is, n + m bits are required to represent all possible products.
Hence, like add, multiply must cope with overflow because we frequently
want a 32-bit product as the result of multiplying two 32-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only
two choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 × multiplicand) in the proper
place if the multiplier digit is a 1, or

2. Place 0 (0 × multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1,
multiplication of binary numbers must always use 0 and 1, and thus always
offers only these two choices.

Now that we have reviewed the basics of multiplication, the traditional
next step is to provide the highly optimized multiply hardware. We break
with tradition in the belief that you will gain a better understanding by
seeing the evolution of the multiply hardware and algorithm through
multiple generations. For now, let’s assume that we are multiplying only
positive numbers.

Sequential Version of the Multiplication
Algorithm and Hardware
This design mimics the algorithm we learned in grammar school; Figure 3.3
shows the hardware. We have drawn the hardware so that data flows from

top to bottom to resemble more closely the paper-and-pencil method.

FIGURE 3.3 First version of the multiplication
hardware.
The Multiplicand register, ALU, and Product
register are all 64 bits wide, with only the
Multiplier register containing 32 bits. (Appendix B
describes ALUs.) The 32-bit multiplicand starts in
the right half of the Multiplicand register and is
shifted left 1 bit on each step. The multiplier is
shifted in the opposite direction at each step. The
algorithm starts with the product initialized to 0.
Control decides when to shift the Multiplicand and
Multiplier registers and when to write new values
into the Product register.

Let’s assume that the multiplier is in the 32-bit Multiplier register and
that the 64-bit Product register is initialized to 0. From the paper-and-pencil
example above, it’s clear that we will need to move the multiplicand left
one digit each step, as it may be added to the intermediate products. Over
32 steps, a 32-bit multiplicand would move 32 bits to the left. Hence, we
need a 64-bit Multiplicand register, initialized with the 32-bit multiplicand

in the right half and zero in the left half. This register is then shifted left 1
bit each step to align the multiplicand with the sum being accumulated in
the 64-bit Product register.

Figure 3.4 shows the three basic steps needed for each bit. The least
significant bit of the multiplier (Multiplier0) determines whether the
multiplicand is added to the Product register. The left shift in step 2 has the
effect of moving the intermediate operands to the left, just as when
multiplying with paper and pencil. The shift right in step 3 gives us the next
bit of the multiplier to examine in the following iteration. These three steps
are repeated 32 times to obtain the product. If each step took one clock
cycle, this algorithm would require almost 100 clock cycles to multiply two
32-bit numbers. The relative importance of arithmetic operations like
multiply varies with the program, but addition and subtraction may be
anywhere from 5 to 100 times more popular than multiply. Accordingly, in
many applications, multiply can take multiple clock cycles without
significantly affecting performance. Yet Amdahl’s Law (see Section 1.11)
reminds us that even a moderate frequency for a slow operation can limit
performance.

FIGURE 3.4 The first multiplication algorithm,
using the hardware shown in Figure 3.3.
If the least significant bit of the multiplier is 1, add
the multiplicand to the product. If not, go to the
next step. Shift the multiplicand left and the

multiplier right in the next two steps. These three
steps are repeated 32 times.

A Multiply Algorithm

Example
Using 4-bit numbers to save space, multiply 2ten × 3ten, or 0010two ×
0011two.

Answer
Figure 3.5 shows the value of each register for each of the steps labeled
according to Figure 3.4, with the final value of 0000 0110two or 6ten.
Color is used to indicate the register values that change on that step, and
the bit circled is the one examined to determine the operation of the next
step.

FIGURE 3.5 Multiply example using algorithm
in Figure 3.4.
The bit examined to determine the next step is
circled in color.

This algorithm and hardware are easily refined to take 1 clock cycle per
step. The speed-up comes from performing the operations in parallel: the
multiplier and multiplicand are shifted while the multiplicand is added to
the product if the multiplier bit is a 1. The hardware only has to ensure that
it tests the right bit of the multiplier and gets the preshifted version of the
multiplicand. The hardware is usually further optimized to halve the width
of the adder and registers by noticing where there are unused portions of
registers and adders. Figure 3.6 shows the revised hardware.

FIGURE 3.6 Refined version of the
multiplication hardware.
Compare with the first version in Figure 3.3. The
Multiplicand register, ALU, and Multiplier register
are all 32 bits wide, with only the Product register
left at 64 bits. Now the product is shifted right.
The separate Multiplier register also disappeared.
The multiplier is placed instead in the right half of
the Product register. These changes are
highlighted in color. (The Product register should
really be 65 bits to hold the carry out of the adder,
but it’s shown here as 64 bits to highlight the
evolution from Figure 3.3.)

Hardware/Software Interface
Replacing arithmetic by shifts can also occur when multiplying by
constants. Some compilers replace multiplies by short constants with a
series of shifts and adds. Because one bit to the left represents a number
twice as large in base 2, shifting the bits left has the same effect as
multiplying by a power of 2. As mentioned in Chapter 2, almost every
compiler will perform the strength reduction optimization of substituting
a left shift for a multiply by a power of 2.

Signed Multiplication
So far, we have dealt with positive numbers. The easiest way to understand
how to deal with signed numbers is to first convert the multiplier and
multiplicand to positive numbers and then remember the original signs. The
algorithms should then be run for 31 iterations, leaving the signs out of the
calculation. As we learned in grammar school, we need negate the product
only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, provided
that we remember that we are dealing with numbers that have infinite digits,
and we are only representing them with 32 bits. Hence, the shifting steps
would need to extend the sign of the product for signed numbers. When the
algorithm completes, the lower word would have the 32-bit product.

Faster Multiplication
Moore’s Law provided so much more in resources that hardware designers
could build much faster multiplication hardware. Whether the multiplicand
is to be added or not is known at the beginning of the multiplication by
looking at each of the 32 multiplier bits. Faster multiplications are possible
by essentially providing one 32-bit adder for each bit of the multiplier: one
input is the multiplicand ANDed with a multiplier bit, and the other is the
output of a prior adder.

A straightforward approach would be to connect the outputs of adders on
the right to the inputs of adders on the left, making a stack of adders 32
high. An alternative way to organize these 32 additions is in a parallel tree,

as Figure 3.7 shows. Instead of waiting for 32 add times, we wait just the
log2 (32) or five 32-bit add times.

FIGURE 3.7 Fast multiplication hardware.
Rather than use a single 32-bit adder 31 times,
this hardware “unrolls the loop” to use 31 adders
and then organizes them to minimize delay.

In fact, multiply can go even faster than five add times because of the use

of carry save adders (see Section B.6 in Appendix B) and because it
is easy to pipeline such a design to be able to support many multiplies
simultaneously (see Chapter 4).

Multiply in MIPS
MIPS provides a separate pair of 32-bit registers to contain the 64-bit
product, called Hi and Lo. To produce a properly signed or unsigned
product, MIPS has two instructions: multiply (mult) and multiply unsigned
(multu). To fetch the integer 32-bit product, the programmer uses move
from lo (mflo). The MIPS assembler generates a pseudoinstruction for
multiply that specifies three general-purpose registers, generating mflo and
mfhi instructions to place the product into registers.

Summary
Multiplication hardware simply shifts and adds, as derived from the paper-
and-pencil method learned in grammar school. Compilers even use shift
instructions for multiplications by powers of 2. With much more hardware
we can do the adds in parallel, and do them much faster.

Hardware/Software Interface
Both MIPS multiply instructions ignore overflow, so it is up to the
software to check to see if the product is too big to fit in 32 bits. There is
no overflow if Hi is 0 for multu or the replicated sign of Lo for mult. The
instruction move from hi (mfhi) can be used to transfer Hi to a general-
purpose register to test for overflow.

3.4 Division
Divide et impera.

Latin for “Divide and rule,” ancient political maxim cited by Machiavelli, 1532

The reciprocal operation of multiply is divide, an operation that is even
less frequent and even more quirky. It even offers the opportunity to
perform a mathematically invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to
recall the names of the operands and the grammar school division
algorithm. For reasons similar to those in the previous section, we limit the

decimal digits to just 0 or 1. The example is dividing 1,001,010ten by
1000ten:

Divide’s two operands, called the dividend and divisor, and the result,
called the quotient, are accompanied by a second result, called the
remainder. Here is another way to express the relationship between the
components:

where the remainder is smaller than the divisor. Occasionally, programs
use the divide instruction simply to get the remainder, ignoring the quotient.

dividend
A number being divided.

divisor
A number that the dividend is divided by.

quotient

The primary result of a division; a number that when multiplied by the
divisor and added to the remainder produces the dividend.

remainder
The secondary result of a division; a number that when added to the
product of the quotient and the divisor produces the dividend.

The basic grammar school division algorithm tries to see how big a
number can be subtracted, creating a digit of the quotient on each attempt.
Our carefully selected decimal example uses only the numbers 0 and 1, so
it’s easy to figure out how many times the divisor goes into the portion of
the dividend: it’s either 0 times or 1 time. Binary numbers contain only 0 or
1, so binary division is restricted to these two choices, thereby simplifying
binary division.

Let’s assume that both the dividend and the divisor are positive and
hence the quotient and the remainder are nonnegative. The division
operands and both results are 32-bit values, and we will ignore the sign for
now.

A Division Algorithm and Hardware
Figure 3.8 shows hardware to mimic our grammar school algorithm. We
start with the 32-bit Quotient register set to 0. Each iteration of the
algorithm needs to move the divisor to the right one digit, so we start with
the divisor placed in the left half of the 64-bit Divisor register and shift it
right 1 bit each step to align it with the dividend. The Remainder register is
initialized with the dividend.

FIGURE 3.8 First version of the division
hardware.
The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the
Quotient register being 32 bits. The 32-bit divisor
starts in the left half of the Divisor register and is
shifted right 1 bit each iteration. The remainder is
initialized with the dividend. Control decides when
to shift the Divisor and Quotient registers and
when to write the new value into the Remainder
register.

Figure 3.9 shows three steps of the first division algorithm. Unlike a
human, the computer isn’t smart enough to know in advance whether the
divisor is smaller than the dividend. It must first subtract the divisor in step
1; remember that this is how we performed the comparison in the set on less
than instruction. If the result is positive, the divisor was smaller or equal to
the dividend, so we generate a 1 in the quotient (step 2a). If the result is
negative, the next step is to restore the original value by adding the divisor
back to the remainder and generate a 0 in the quotient (step 2b). The divisor
is shifted right and then we iterate again. The remainder and quotient will
be found in their namesake registers after the iterations are complete.

A Divide Algorithm

Example
Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten
by 2ten, or 0000 0111two by 0010two.

Answer
Figure 3.10 shows the value of each register for each of the steps, with
the quotient being 3ten and the remainder 1ten. Notice that the test in step
2 of whether the remainder is positive or negative simply tests whether
the sign bit of the Remainder register is a 0 or 1. The surprising
requirement of this algorithm is that it takes n + 1 steps to get the proper
quotient and remainder.

FIGURE 3.10 Division example using the
algorithm in Figure 3.9.
The bit examined to determine the next step is
circled in color.

FIGURE 3.9 A division algorithm, using the
hardware in Figure 3.8.
If the remainder is positive, the divisor did go into
the dividend, so step 2a generates a 1 in the
quotient. A negative remainder after step 1
means that the divisor did not go into the

dividend, so step 2b generates a 0 in the quotient
and adds the divisor to the remainder, thereby
reversing the subtraction of step 1. The final shift,
in step 3, aligns the divisor properly, relative to
the dividend for the next iteration. These steps
are repeated 33 times.

This algorithm and hardware can be refined to be faster and cheaper. The
speed-up comes from shifting the operands and the quotient simultaneously
with the subtraction. This refinement halves the width of the adder and
registers by noticing where there are unused portions of registers and
adders. Figure 3.11 shows the revised hardware.

FIGURE 3.11 An improved version of the
division hardware.
The Divisor register, ALU, and Quotient register
are all 32 bits wide, with only the Remainder
register left at 64 bits. Compared to Figure 3.8,
the ALU and Divisor registers are halved and the
remainder is shifted left. This version also
combines the Quotient register with the right half
of the Remainder register. (As in Figure 3.6, the
Remainder register should really be 65 bits to
make sure the carry out of the adder is not lost.)

Signed Division
So far, we have ignored signed numbers in division. The simplest solution
is to remember the signs of the divisor and dividend and then negate the
quotient if the signs disagree.

Elaboration
The one complication of signed division is that we must also set the sign
of the remainder. Remember that the following equation must always
hold:

To understand how to set the sign of the remainder, let’s look at the
example of dividing all the combinations of ± 7ten by ± 2ten. The first
case is easy:

Checking the results:

If we change the sign of the dividend, the quotient must change as
well:

Rewriting our basic formula to calculate the remainder:

So,

Checking the results again:

The reason the answer isn’t a quotient of − 4 and a remainder of + 1,
which would also fit this formula, is that the absolute value of the

quotient would then change depending on the sign of the dividend and
the divisor! Clearly, if

programming would be an even greater challenge. This anomalous
behavior is avoided by following the rule that the dividend and remainder
must have the same signs, no matter what the signs of the divisor and
quotient.

We calculate the other combinations by following the same rule:

Thus the correctly signed division algorithm negates the quotient if the
signs of the operands are opposite and makes the sign of the nonzero
remainder match the dividend.

Faster Division
Moore’s Law applies to division hardware as well as multiplication, so we
would like to be able to speed up division by throwing hardware at it. We
used many adders to speed up multiply, but we cannot do the same trick for
divide. The reason is that we need to know the sign of the difference before
we can perform the next step of the algorithm, whereas with multiply we
could calculate the 32 partial products immediately.

There are techniques to produce more than one bit of the quotient per
step. The SRT division technique tries to predict several quotient bits per
step, using a table lookup based on the upper bits of the dividend and
remainder. It relies on subsequent steps to correct wrong predictions. A
typical value today is 4 bits. The key is guessing the value to subtract. With
binary division, there is only a single choice. These algorithms use 6 bits
from the remainder and 4 bits from the divisor to index a table that
determines the guess for each step.

The accuracy of this fast method depends on having proper values in the
lookup table. The fallacy on page 239 in Section 3.9 shows what can
happen if the table is incorrect.

Divide in MIPS
You may have already observed that the same sequential hardware can be
used for both multiply and divide in Figures 3.6 and 3.11. The only
requirement is a 64-bit register that can shift left or right and a 32-bit ALU
that adds or subtracts. Hence, MIPS uses the 32-bit Hi and 32-bit Lo
registers for both multiply and divide.

As we might expect from the algorithm above, Hi contains the remainder,
and Lo contains the quotient after the divide instruction completes.

To handle both signed integers and unsigned integers, MIPS has two
instructions: divide (div) and divide unsigned (divu). The MIPS assembler

allows divide instructions to specify three registers, generating the mflo or
mfhi instructions to place the desired result into a general-purpose register.

Summary
The common hardware support for multiply and divide allows MIPS to
provide a single pair of 32-bit registers that are used both for multiply and
divide. We accelerate division by predicting multliple quotient bits and then
correcting mispredictions later. Figure 3.12 summarizes the enhancements
to the MIPS instruction set for the last two sections.

FIGURE 3.12 MIPS core architecture.
The memory and registers of the MIPS
architecture are not included for space reasons,
but this section added the Hi and Lo registers to
support multiply and divide. MIPS machine
language is listed in the MIPS Reference Data
Card at the front of this book.

Hardware/Software Interface

MIPS divide instructions ignore overflow, so software must determine
whether the quotient is too large. In addition to overflow, division can
also result in an improper calculation: division by 0. Some computers
distinguish these two anomalous events. MIPS software must check the
divisor to discover division by 0 as well as overflow.

Elaboration
An even faster algorithm than Figure 3.9 does not immediately add the
divisor back if the remainder is negative. It simply adds the dividend to
the shifted remainder in the following step, since (r + d) × 2 − d = r × 2 +
d × 2 − d = r × 2 + d. This nonrestoring division algorithm, which takes 1
clock cycle per step, is explored further in the exercises; the algorithm in
Figure 3.9 is called restoring division. A third algorithm that doesn’t save
the result of the subtract if it’s negative is called a nonperforming
division algorithm. It averages one-third fewer arithmetic operations.

3.5 Floating Point
Speed gets you nowhere if you’re headed the wrong way.

American proverb

Going beyond signed and unsigned integers, programming languages
support numbers with fractions, which are called reals in mathematics. Here
are some examples of reals:

3.14159265… ten (pi)
2.71828… ten (e)
0.000000001ten or 1.0ten × 10−9 (seconds in a nanosecond)
3,155,760,000ten or 3.15576ten × 109 (seconds in a typical century)

Notice that in the last case, the number didn’t represent a small fraction,
but it was bigger than we could represent with a 32-bit signed integer. The
alternative notation for the last two numbers is called scientific notation,

which has a single digit to the left of the decimal point. A number in
scientific notation that has no leading 0s is called a normalized number,
which is the usual way to write it. For example, 1.0ten × 10−9 is in
normalized scientific notation, but 0.1ten × 10−8 and 10.0ten × 10−10 are not.

scientific notation
A notation that renders numbers with a single digit to the left of the
decimal point.

normalized
A number in floating-point notation that has no leading 0s.

Just as we can show decimal numbers in scientific notation, we can also
show binary numbers in scientific notation:

To keep a binary number in normalized form, we need a base that we can
increase or decrease by exactly the number of bits the number must be
shifted to have one nonzero digit to the left of the decimal point. Only a
base of 2 fulfills our need. Since the base is not 10, we also need a new
name for decimal point; binary point will do fine.

Computer arithmetic that supports such numbers is called floating
point because it represents numbers in which the binary point is not fixed,
as it is for integers. The programming language C uses the name float for
such numbers. Just as in scientific notation, numbers are represented as a
single nonzero digit to the left of the binary point. In binary, the form is

(Although the computer represents the exponent in base 2 as well as the
rest of the number, to simplify the notation we show the exponent in
decimal.)

floating point
Computer arithmetic that represents numbers in which the binary point is
not fixed.

A standard scientific notation for reals in normalized form offers three
advantages. It simplifies exchange of data that includes floating-point
numbers; it simplifies the floating-point arithmetic algorithms to know that
numbers will always be in this form; and it increases the accuracy of the
numbers that can be stored in a word, since the unnecessary leading 0s are
replaced by real digits to the right of the binary point.

Floating-Point Representation
A designer of a floating-point representation must find a compromise
between the size of the fraction and the size of the exponent, because a
fixed word size means you must take a bit from one to give a bit to the
other. This tradeoff is between precision and range: increasing the size of
the fraction enhances the precision of the fraction, while increasing the size
of the exponent increases the range of numbers that can be represented. As
our design guideline from Chapter 2 reminds us, good design demands
good compromise.

fraction
The value, generally between 0 and 1, placed in the fraction field. The
fraction is also called the mantissa.

exponent
In the numerical representation system of floating-point arithmetic, the
value that is placed in the exponent field.

Floating-point numbers are usually a multiple of the size of a word. The
representation of a MIPS floating-point number is shown below, where s is
the sign of the floating-point number (1 meaning negative), exponent is the
value of the 8-bit exponent field (including the sign of the exponent), and

fraction is the 23-bit number. As we recall from Chapter 2, this
representation is sign and magnitude, since the sign is a separate bit from
the rest of the number.

In general, floating-point numbers are of the form

F involves the value in the fraction field and E involves the value in the
exponent field; the exact relationship to these fields will be spelled out
soon. (We will shortly see that MIPS does something slightly more
sophisticated.)

These chosen sizes of exponent and fraction give MIPS computer
arithmetic an extraordinary range. Fractions almost as small as 2.0ten ×
10−38 and numbers almost as large as 2.0ten × 1038 can be represented in a
computer. Alas, extraordinary differs from infinite, so it is still possible for
numbers to be too large. Thus, overflow exceptions can occur in floating-
point arithmetic as well as in integer arithmetic. Notice that overflow here
means that the exponent is too large to be represented in the exponent field.

overflow (floating-point)
A situation in which a positive exponent becomes too large to fit in the
exponent field.

Floating point offers a new kind of exceptional event as well. Just as
programmers will want to know when they have calculated a number that is
too large to be represented, they will want to know if the nonzero fraction
they are calculating has become so small that it cannot be represented;
either event could result in a program giving incorrect answers. To

distinguish it from overflow, we call this event underflow. This situation
occurs when the negative exponent is too large to fit in the exponent field.

underflow (floating-point)
A situation in which a negative exponent becomes too large to fit in the
exponent field.

One way to reduce chances of underflow or overflow is to offer another
format that has a larger exponent. In C this number is called double, and
operations on doubles are called double precision floating-point arithmetic;
single precision floating point is the name of the earlier format.

double precision
A floating-point value represented in two 32-bit words.

single precision
A floating-point value represented in a single 32-bit word.

The representation of a double precision floating-point number takes two
MIPS words, as shown below, where s is still the sign of the number,
exponent is the value of the 11-bit exponent field, and fraction is the 52-bit
number in the fraction field.

MIPS double precision allows numbers almost as small as 2.0ten × 10−308

and almost as large as 2.0ten × 10308. Although double precision does
increase the exponent range, its primary advantage is its greater precision
because of the much larger fraction.

These formats go beyond MIPS. They are part of the IEEE 754 floating-
point standard, found in virtually every computer invented since 1980. This
standard has greatly improved both the ease of porting floating-point
programs and the quality of computer arithmetic.

To pack even more bits into the significand, IEEE 754 makes the leading
1-bit of normalized binary numbers implicit. Hence, the number is actually
24 bits long in single precision (implied 1 and a 23-bit fraction), and 53 bits
long in double precision (1 + 52). To be precise, we use the term significand
to represent the 24- or 53-bit number that is 1 plus the fraction, and fraction
when we mean the 23- or 52-bit number. Since 0 has no leading 1, it is
given the reserved exponent value 0 so that the hardware won’t attach a
leading 1 to it.

Thus 00 … 00two represents 0; the representation of the rest of the
numbers uses the form from before with the hidden 1 added:

where the bits of the fraction represent a number between 0 and 1 and E
specifies the value in the exponent field, to be given in detail shortly. If we
number the bits of the fraction from left to right s1, s2, s3, …, then the
value is

Figure 3.13 shows the encodings of IEEE 754 floating-point numbers.
Other features of IEEE 754 are special symbols to represent unusual events.
For example, instead of interrupting on a divide by 0, software can set the
result to a bit pattern representing + ∞ or − ∞; the largest exponent is
reserved for these special symbols. When the programmer prints the results,
the program will print an infinity symbol. (For the mathematically trained,
the purpose of infinity is to form topological closure of the reals.)

FIGURE 3.13 EEE 754 encoding of floating-point
numbers.
A separate sign bit determines the sign.
Denormalized numbers are described in the
Elaboration on page 232. This information is also
found in Column 4 of the MIPS Reference Data
Card at the front of this book.

IEEE 754 even has a symbol for the result of invalid operations, such as
0/0 or subtracting infinity from infinity. This symbol is NaN, for Not a
Number. The purpose of NaNs is to allow programmers to postpone some
tests and decisions to a later time in the program when they are convenient.

The designers of IEEE 754 also wanted a floating-point representation
that could be easily processed by integer comparisons, especially for
sorting. This desire is why the sign is in the most significant bit, allowing a
quick test of less than, greater than, or equal to 0. (It’s a little more
complicated than a simple integer sort, since this notation is essentially sign
and magnitude rather than two’s complement.)

Placing the exponent before the significand also simplifies the sorting of
floating-point numbers using integer comparison instructions, since
numbers with bigger exponents look larger than numbers with smaller
exponents, as long as both exponents have the same sign.

Negative exponents pose a challenge to simplified sorting. If we use
two’s complement or any other notation in which negative exponents have a
1 in the most significant bit of the exponent field, a negative exponent will
look like a big number. For example, 1.0two × 2−1 would be represented as

(Remember that the leading 1 is implicit in the significand.) The value
1.0two × 2+1 would look like the smaller binary number

The desirable notation must therefore represent the most negative
exponent as 00 … 00two and the most positive as 11 … 11two. This
convention is called biased notation, with the bias being the number
subtracted from the normal, unsigned representation to determine the real
value.

IEEE 754 uses a bias of 127 for single precision, so an exponent of − 1 is
represented by the bit pattern of the value − 1 + 127ten, or 126ten=0111
1110two, and + 1 is represented by 1 + 127, or 128ten=1000 0000two. The
exponent bias for double precision is 1023. Biased exponent means that the
value represented by a floating-point number is really

The range of single precision numbers is then from as small as

to as large as

Let’s demonstrate.

Floating-Point Representation

Example
Show the IEEE 754 binary representation of the number − 0.75ten in
single and double precision.

Answer
The number − 0.75ten is also

It is also represented by the binary fraction

In scientific notation, the value is

and in normalized scientific notation, it is

The general representation for a single precision number is

Subtracting the bias 127 from the exponent of − 1.1two × 2−1 yields

The single precision binary representation of − 0.75ten is then

The double precision representation is

Now let’s try going the other direction.

Converting Binary to Decimal Floating Point

Example
What decimal number is represented by this single precision float?

Answer
The sign bit is 1, the exponent field contains 129, and the fraction field
contains 1 × 2−2 = 1/4, or 0.25. Using the basic equation,

In the next few subsections, we will give the algorithms for floating-point
addition and multiplication. At their core, they use the corresponding
integer operations on the significands, but extra bookkeeping is necessary to
handle the exponents and normalize the result. We first give an intuitive
derivation of the algorithms in decimal and then give a more detailed,
binary version in the figures.

Following IEEE guidelines, the IEEE 754 committee was reformed 20
years after the standard to see what changes, if any, should be made. The
revised standard IEEE 754-2008 includes nearly all the IEEE 754-1985 and
adds a 16-bit format (“half precision”) and a 128-bit format (“quadruple
precision”). Half precision has a 1-bit sign, 5-bit exponent (with a bias of
15), and a 10-bit fraction. Quadruple precision has a 1-bit sign, 15-bit
exponent (with a bias of 262143), and a 112-bit fraction. No hardware has
yet been built that supports quadruple precision, but it will surely come.
The revised standard also add decimal floating point arithmetic, which IBM
mainframes have implemented.

Elaboration
In an attempt to increase range without removing bits from the
significand, some computers before the IEEE 754 standard used a base
other than 2. For example, the IBM 360 and 370 mainframe computers
used base 16. Since changing the IBM exponent by one means shifting
the significand by 4 bits, “normalized” base 16 numbers can have up to 3
leading bits of 0s! Hence, hexadecimal digits mean that up to 3 bits must
be dropped from the significand, which leads to surprising problems in
the accuracy of floating-point arithmetic. IBM mainframes now support
IEEE 754 as well as the hex format.

Floating-Point Addition

Let’s add numbers in scientific notation by hand to illustrate the problems
in floating-point addition: 9.999ten × 101 + 1.610ten × 10−1. Assume that we
can store only four decimal digits of the significand and two decimal digits
of the exponent.

Step 1. To be able to add these numbers properly, we must align the
decimal point of the number that has the smaller exponent. Hence, we
need a form of the smaller number, 1.610ten × 10−1, that matches the
larger exponent. We obtain this by observing that there are multiple
representations of an unnormalized floating-point number in scientific
notation:

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999ten × 101. Thus, the
first step shifts the significand of the smaller number to the right until
its corrected exponent matches that of the larger number. But we can
represent only four decimal digits so, after shifting, the number is
really

Step 2. Next comes the addition of the significands:

The sum is 10.015ten × 101.
Step 3. This sum is not in normalized scientific notation, so we need
to adjust it:

After the addition we may have to shift the sum to put it into
normalized form, adjusting the exponent appropriately. This example
shows shifting to the right, but if one number were positive and the
other were negative, it would be possible for the sum to have many
leading 0s, requiring left shifts. Whenever the exponent is increased
or decreased, we must check for overflow or underflow—that is, we
must make sure that the exponent still fits in its field.
Step 4. Since we assumed that the significand can be only four digits
long (excluding the sign), we must round the number. In our grammar
school algorithm, the rules truncate the number if the digit to the right
of the desired point is between 0 and 4 and add 1 to the digit if the
number to the right is between 5 and 9. The number

is rounded to four digits in the significand to

since the fourth digit to the right of the decimal point was between 5
and 9. Notice that if we have bad luck on rounding, such as adding 1
to a string of 9s, the sum may no longer be normalized and we would
need to perform step 3 again.

Figure 3.14 shows the algorithm for binary floating-point addition that
follows this decimal example. Steps 1 and 2 are similar to the example just
discussed: adjust the significand of the number with the smaller exponent
and then add the two significands. Step 3 normalizes the results, forcing a
check for overflow or underflow. The test for overflow and underflow in
step 3 depends on the precision of the operands. Recall that the pattern of

all 0 bits in the exponent is reserved and used for the floating-point
representation of zero. Moreover, the pattern of all 1 bits in the exponent is
reserved for indicating values and situations outside the scope of normal
floating-point numbers (see the Elaboration on page 232). For the example
below, remember that for single precision, the maximum exponent is 127,
and the minimum exponent is −126.

Binary Floating-Point Addition

Example
Try adding the numbers 0.5ten and − 0.4375ten in binary using the
algorithm in Figure 3.14.

Answer
Let’s first look at the binary version of the two numbers in normalized
scientific notation, assuming that we keep 4 bits of precision:

Now we follow the algorithm:

Step 1. The significand of the number with the lesser exponent
(−1.11two × 2−2) is shifted right until its exponent matches the larger
number:

Step 2. Add the significands:

Step 3. Normalize the sum, checking for overflow or underflow:

Since 127 ≥ −4 ≥ − 126, there is no overflow or underflow. (The
biased exponent would be −4 + 127, or 123, which is between 1
and 254, the smallest and largest unreserved biased exponents.)
Step 4. Round the sum:

The sum already fits exactly in 4 bits, so there is no change to the
bits due to rounding.
This sum is then

This sum is what we would expect from adding 0.5ten to − 0.4375ten.

Start

1. Compare the exponents of the two numbers;

shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

Overflow or

underflow?

No

Yes

4. Round the significand to the appropriate

number of bits

No

Still normalized?

Yes

Done

Exception

FIGURE 3.14 Floating-point addition.
The normal path is to execute steps 3 and 4
once, but if rounding causes the sum to be
unnormalized, we must repeat step 3.

Many computers dedicate hardware to run floating-point operations as
fast as possible. Figure 3.15 sketches the basic organization of hardware for
floating-point addition.

FIGURE 3.15 Block diagram of an arithmetic unit
dedicated to floating-point addition.
The steps of Figure 3.14 correspond to each
block, from top to bottom. First, the exponent of
one operand is subtracted from the other using
the small ALU to determine which is larger and by
how much. This difference controls the three
multiplexors; from left to right, they select the
larger exponent, the significand of the smaller
number, and the significand of the larger number.
The smaller significand is shifted right, and then
the significands are added together using the big
ALU. The normalization step then shifts the sum
left or right and increments or decrements the

exponent. Rounding then creates the final result,
which may require normalizing again to produce
the actual final result.

Floating-Point Multiplication
Now that we have explained floating-point addition, let’s try floating-point
multiplication. We start by multiplying decimal numbers in scientific
notation by hand: 1.110ten × 1010 × 9.200ten × 10−5. Assume that we can
store only four digits of the significand and two digits of the exponent.

Step 1. Unlike addition, we calculate the exponent of the product by
simply adding the exponents of the operands together:

Let’s do this with the biased exponents as well to make sure we obtain
the same result: 10 + 127 = 137, and − 5 + 127 = 122, so

This result is too large for the 8-bit exponent field, so something is
amiss! The problem is with the bias because we are adding the biases
as well as the exponents:

Accordingly, to get the correct biased sum when we add biased
numbers, we must subtract the bias from the sum:

and 5 is indeed the exponent we calculated initially.
Step 2. Next comes the multiplication of the significands:

There are three digits to the right of the decimal point for each
operand, so the decimal point is placed six digits from the right in the
product significand:

Assuming that we can keep only three digits to the right of the
decimal point, the product is 10.212 × 105.
Step 3. This product is unnormalized, so we need to normalize it:

Thus, after the multiplication, the product can be shifted right one
digit to put it in normalized form, adding 1 to the exponent. At this
point, we can check for overflow and underflow. Underflow may
occur if both operands are small—that is, if both have large negative
exponents.
Step 4. We assumed that the significand is only four digits long
(excluding the sign), so we must round the number. The number

is rounded to four digits in the significand to

Step 5. The sign of the product depends on the signs of the original
operands. If they are both the same, the sign is positive; otherwise, it’s
negative. Hence, the product is

The sign of the sum in the addition algorithm was determined by
addition of the significands, but in multiplication, the sign of the
product is determined by the signs of the operands.

Once again, as Figure 3.16 shows, multiplication of binary floating-point
numbers is quite similar to the steps we have just completed. We start with
calculating the new exponent of the product by adding the biased
exponents, being sure to subtract one bias to get the proper result. Next is
multiplication of significands, followed by an optional normalization step.
The size of the exponent is checked for overflow or underflow, and then the

product is rounded. If rounding leads to further normalization, we once
again check for exponent size. Finally, set the sign bit to 1 if the signs of the
operands were different (negative product) or to 0 if they were the same
(positive product).

Binary Floating-Point Multiplication

Example
Let’s try multiplying the numbers 0.5ten and − 0.4375ten, using the steps
in Figure 3.16.

Answer
In binary, the task is multiplying 1.000two × 2−1 by − 1.110two × 2−2.

Step 1. Adding the exponents without bias:

or, using the biased representation:

Step 2. Multiplying the significands:

The product is 1.110000two × 2−3, but we need to keep it to 4 bits,
so it is 1.110two × 2−3.
Step 3. Now we check the product to make sure it is normalized,
and then check the exponent for overflow or underflow. The
product is already normalized and, since 127 ≥ − 3 ≥ − 126, there
is no overflow or underflow. (Using the biased representation, 254
≥ 124 ≥ 1, so the exponent fits.)
Step 4. Rounding the product makes no change:

Step 5. Since the signs of the original operands differ, make the
sign of the product negative. Hence, the product is

Converting to decimal to check our results:

The product of 0.5ten and − 0.4375ten is indeed − 0.21875ten.

Start

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

Overflow or

underflow?

No

Yes

4. Round the significand to the appropriate

number of bits

No

Still normalized?

Yes

5. Set the sign of the product to positive if the

signs of the original operands are the same;

if they differ make the sign negative

Done

Exception

FIGURE 3.16 Floating-point multiplication.
The normal path is to execute steps 3 and 4
once, but if rounding causes the sum to be
unnormalized, we must repeat step 3.

Floating-Point Instructions in MIPS
MIPS supports the IEEE 754 single precision and double precision formats
with these instructions:

■ Floating-point addition, single (add.s) and addition, double (add.d)
■ Floating-point subtraction, single (sub.s) and subtraction, double
(sub.d)
■ Floating-point multiplication, single (mul.s) and multiplication,
double (mul.d)
■ Floating-point division, single (div.s) and division, double (div.d)
■ Floating-point comparison, single (c.x.s) and comparison, double
(c.x.d), where x may be equal (eq), not equal (neq), less than (lt),
less than or equal (le), greater than (gt), or greater than or equal
(ge)
■ Floating-point branch, true (bclt) and branch, false (bclf)

Floating-point comparison sets a bit to true or false, depending on the
comparison condition, and a floating-point branch then decides whether or
not to branch, depending on the condition.

The MIPS designers decided to add separate floating-point registers—
called $f0, $f1, $f2, …—used either for single precision or double
precision. Hence, they included separate loads and stores for floating-point
registers: lwc1 and swc1. The base registers for floating-point data transfers
which are used for addresses remain integer registers. The MIPS code to
load two single precision numbers from memory, add them, and then store
the sum might look like this:

lwc1 $f4,c($sp) # Load 32-bit F.P. number into F4

lwc1 $f6,a($sp) # Load 32-bit F.P. number into F6
add.s $f2,$f4,$f6 # F2 = F4 + F6 single precision
swc1 $f2,b($sp) # Store 32-bit F.P. number from F2

A double precision register is really an even-odd pair of single precision
registers, using the even register number as its name. Thus, the pair of
single precision registers $f2 and $f3 also form the double precision
register named $f2.

Figure 3.17 summarizes the floating-point portion of the MIPS
architecture revealed in this chapter, with the additions to support floating
point shown in color. Similar to Figure 2.19 in Chapter 2, Figure 3.18
shows the encoding of these instructions.

Hardware/Software Interface
One issue that architects face in supporting floating-point arithmetic is
whether to use the same registers used by the integer instructions or to
add a special set for floating point. Because programs normally perform
integer operations and floating-point operations on different data,
separating the registers will only slightly increase the number of
instructions needed to execute a program. The major impact is to create a
separate set of data transfer instructions to move data between floating-
point registers and memory.

The benefits of separate floating-point registers are having twice as
many registers without using up more bits in the instruction format,
having twice the register bandwidth by having separate integer and
floating-point register sets, and being able to customize registers to
floating point; for example, some computers convert all sized operands in
registers into a single internal format.

Compiling a Floating-Point C Program into MIPS
Assembly Code

Example
Let’s convert a temperature in Fahrenheit to Celsius:

float f2c (float fahr)
 {
 return ((5.0/9.0) *(fahr - 32.0));
 }

Assume that the floating-point argument fahr is passed in $f12 and
the result should go in $f0. (Unlike integer registers, floating-point
register 0 can contain a number.) What is the MIPS assembly code?

Answer
We assume that the compiler places the three floating-point constants in
memory within easy reach of the global pointer $gp. The first two
instructions load the constants 5.0 and 9.0 into floating-point registers:

f2c:
 lwc1 $f16,const5($gp) # $f16 = 5.0 (5.0 in memory)
 lwc1 $f18,const9($gp) # $f18 = 9.0 (9.0 in memory)

They are then divided to get the fraction 5.0/9.0:

div.s $f16, $f16, $f18 # $f16 = 5.0 / 9.0

(Many compilers would divide 5.0 by 9.0 at compile time and save the
single constant 5.0/9.0 in memory, thereby avoiding the divide at
runtime.) Next, we load the constant 32.0 and then subtract it from fahr
($f12):

lwc1 $f18, const32($gp)# $f18 = 32.0
sub.s $f18, $f12, $f18 # $f18 = fahr - 32.0

Finally, we multiply the two intermediate results, placing the product
in $f0 as the return result, and then return

mul.s $f0, $f16, $f18 # $f0 = (5/9)*(fahr - 32.0)
jr $ra # return
Now let’s perform floating-point operations on matrices, code

commonly found in scientific programs.

Compiling Floating-Point C Procedure with Two-
Dimensional Matrices into MIPS

Example
Most floating-point calculations are performed in double precision. Let’s
per-form matrix multiply of C = C + A * B. This code is a simplified
version of the DGEMM program in Figure 2.43 on page 166. Let’s
assume C, A, and B are all square matrices with 32 elements in each
dimension.

The array starting addresses are parameters, so they are in $a0, $a1,
and $a2. Assume that the integer variables are in $s0, $s1, and $s2,
respectively. What is the MIPS assembly code for the body of the
procedure?

Answer
Note that c[i][j] is used in the innermost loop above. Since the loop
index is k, the index does not affect c[i][j], so we can avoid loading
and storing c[i][j] each iteration. Instead, the compiler loads c[i][j]
into a register outside the loop, accumulates the sum of the products of
a[i][k] and b[k][j] in that same register, and then stores the sum into
c[i][j] upon termination of the innermost loop.

We keep the code simpler by using the assembly language
pseudoinstructions li (which loads a constant into a register), and l.d
and s.d (which the assembler turns into a pair of data transfer
instructions, lwc1 or swc1, to a pair of floating-point registers).

The body of the procedure starts with saving the loop termination
value of 32 in a temporary register and then initializing the three for loop
variables:

To calculate the address of c[i][j], we need to know how a 32 × 32,
two-dimensional array is stored in memory. As you might expect, its
layout is the same as if there were 32 single-dimension arrays, each with
32 elements. So the first step is to skip over the i “single-dimensional
arrays,” or rows, to get the one we want. Thus, we multiply the index in
the first dimension by the size of the row, 32. Since 32 is a power of 2,
we can use a shift instead:

sll $t2, $s0, 5 # $t2 = i * 25 (size of row of c)

Now we add the second index to select the jth element of the desired
row:

addu $t2, $t2, $s1 # $t2 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a
matrix element in bytes. Since each element is 8 bytes for double
precision, we can instead shift left by 3 since 8 is a power of 2:

sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

Next we add this sum to the base address of c, giving the address of
c[i][j], and then load the double precision number c[i][j] into $f4:

addu $t2, $a0, $t2 # $t2 = byte address of c[i][j]

l.d $f4, 0($t2) # $f4 = 8 bytes of c[i][j]

The following five instructions are virtually identical to the last five:
calculate the address and then load the double precision number b[k][j].

Similarly, the next five instructions are like the last five: calculate the
address and then load the double precision number a[i][k].

Now that we have loaded all the data, we are finally ready to do some
floating-point operations! We multiply elements of a and b located in
registers $f18 and $f16, and then accumulate the sum in $f4.
mul.d $f16, $f18, $f16 # $f16 = a[i][k] * b[k][j]

add.d $f4, $f4, $f16 # f4 = c[i][j] + a[i][k] * b[k][j]
The final block increments the index k and loops back if the index is

not 32. If it is 32, and thus the end of the innermost loop, we need to
store the sum accumulated in $f4 into c[i][j].

addiu $s2, $s2, 1 # $k = k + 1
bne $s2, $t1, L3 # if (k ! = 32) go to L3
s.d $f4, 0($t2) # c[i][j] = $f4
Similarly, these final four instructions increment the index variable of

the middle and outermost loops, looping back if the index is not 32 and
exiting if the index is 32.

Figure 3.22 below shows the x86 assembly language code for a
slightly different version of DGEMM in Figure 3.21.

Elaboration
The array layout discussed in the example, called row-major order, is
used by C and many other programming languages. Fortran instead uses
column-major order, whereby the array is stored column by column.

Elaboration
Only 16 of the 32 MIPS floating-point registers could originally be used
for double precision operations: $f0, $f2, $f4, …, $f30. Double
precision is computed using pairs of these single precision registers. The
odd-numbered floating-point registers were used only to load and store
the right half of 64-bit floating-point numbers. MIPS-32 added l.d and
s.d to the instruction set. MIPS-32 also added “paired single” versions of
all floating-point instructions, where a single instruction results in two
parallel floating-point operations on two 32-bit operands inside 64-bit
registers (see Section 3.6). For example, add.ps $f0, $f2, $f4 is
equivalent to add.s $f0, $f2, $f4 followed by add.s $f1, $f3, $f5.

Elaboration
Another reason for separate integers and floating-point registers is that
microprocessors in the 1980s didn’t have enough transistors to put the
floating-point unit on the same chip as the integer unit. Hence, the
floating-point unit, including the floating-point registers, was optionally
available as a second chip. Such optional accelerator chips are called
coprocessors, and explain the acronym for floating-point loads in MIPS:
lwc1 means load word to coprocessor 1, the floating-point unit.

(Coprocessor 0 deals with virtual memory, described in Chapter 5.) Since
the early 1990s, microprocessors have integrated floating point (and just
about everything else) on chip.

Elaboration
As mentioned in Section 3.4, accelerating division is more challenging
than multiplication. In addition to SRT, another technique to leverage a
fast multiplier is Newton’s iteration, where division is recast as finding
the zero of a function to find the reciprocal 1/c, which is then multiplied
by the other operand. Iteration techniques cannot be rounded properly
without calculating many extra bits. A TI chip solved this problem by
calculating an extra-precise reciprocal.

Elaboration
Java embraces IEEE 754 by name in its definition of Java floating-point
data types and operations. Thus, the code in the first example could have
well been generated for a class method that converted Fahrenheit to
Celsius.

The second example above uses multiple dimensional arrays, which
are not explicitly supported in Java. Java allows arrays of arrays, but
each array may have its own length, unlike multiple dimensional arrays
in C. Like the examples in Chapter 2, a Java version of this second
example would require a good deal of checking code for array bounds,
including a new length calculation at the end of row access. It would also
need to check that the object reference is not null.

FIGURE 3.17 MIPS floating-point architecture
revealed thus far.
See Appendix A, Section A.10, for more detail.
This information is also found in column 2 of the
MIPS Reference Data Card at the front of this
book.

FIGURE 3.18 MIPS floating-point instruction
encoding.
This notation gives the value of a field by row and
by column. For example, in the top portion of the
figure, lw is found in row number 4 (100two for bits
31–29 of the instruction) and column number 3
(011two for bits 28–26 of the instruction), so the
corresponding value of the op field (bits 31–26) is
100011two. Underlined text means the field is used
elsewhere. For example, FlPt in row 2 and
column 1 (op = 010001two) is defined in the
bottom part of the figure. Hence sub.f in row 0
and column 1 of the bottom section means that
the funct field (bits 5–0) of the instruction is

000001two and the op field (bits 31–26) is
010001two. Note that the 5-bit rs field, specified in
the middle portion of the figure, determines
whether the operation is single precision (f = s, so
rs = 10000) or double precision (f = d, so rs =
10001). Similarly, bit 16 of the instruction
determines if the bc1.c instruction tests for true
(bit 16 = 1= > bc1.t) or false (bit 16 = 0= > bc1.f).
This information is also found in column 2 of the
MIPS Reference Data Card at the front of this
book.

Accurate Arithmetic
Unlike integers, which can represent exactly every number between the
smallest and largest number, floating-point numbers are normally
approximations for a number they can’t really represent. The reason is that
an infinite variety of real numbers exists between, say, 0 and 1, but no more
than 253 can be represented exactly in double precision floating point. The
best we can do is getting the floating-point representation close to the actual
number. Thus, IEEE 754 offers several modes of rounding to let the
programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the
hardware to include extra bits in the calculation. In the preceding examples,
we were vague on the number of bits that an intermediate representation
can occupy, but clearly, if every intermediate result had to be truncated to
the exact number of digits, there would be no opportunity to round. IEEE
754, therefore, always keeps two extra bits on the right during intermediate
additions, called guard and round, respectively. Let’s do a decimal
example to illustrate their value.

guard
The first of two extra bits kept on the right during intermediate
calculations of floating-point numbers; used to improve rounding

accuracy.

round
Method to make the intermediate floating-point result fit the floating-
point format; the goal is typically to find the nearest number that can be
represented in the format.

Rounding with Guard Digits

Example
Add 2.56ten × 100 to 2.34ten × 102, assuming that we have three
significant decimal digits. Round to the nearest decimal number with
three significant decimal digits, first with guard and round digits, and
then without them.

Answer
First we must shift the smaller number to the right to align the exponents,
so 2.56ten × 100 becomes 0.0256ten × 102. Since we have guard and round
digits, we are able to represent the two least significant digits when we
align expo-nents. The guard digit holds 5 and the round digit holds 6.
The sum is

Thus the sum is 2.3656ten × 102. Since we have two digits to round, we
want values 0 to 49 to round down and 51 to 99 to round up, with 50
being the tiebreaker. Rounding the sum up with three significant digits
yields 2.37ten × 102.

Doing this without guard and round digits drops two digits from the
calculation. The new sum is then

The answer is 2.36ten × 102, off by 1 in the last digit from the sum
above.

Since the worst case for rounding would be when the actual number is
halfway between two floating-point representations, accuracy in floating
point is normally measured in terms of the number of bits in error in the
least significant bits of the significand; the measure is called the number of
units in the last place, or ulp. If a number were off by 2 in the least
significant bits, it would be called off by 2 ulps. Provided there is no
overflow, underflow, or invalid operation exceptions, IEEE 754 guarantees
that the computer uses the number that is within one-half ulp.

units in the last place (ulp)
The number of bits in error in the least significant bits of the significand
between the actual number and the number that can be represented.

Elaboration
Although the example above really needed just one extra digit, multiply
can need two. A binary product may have one leading 0 bit; hence, the
normalizing step must shift the product one bit left. This shifts the guard
digit into the least significant bit of the product, leaving the round bit to
help accurately round the product.

IEEE 754 has four rounding modes: always round up (toward + ∞),
always round down (toward − ∞), truncate, and round to nearest even.
The final mode determines what to do if the number is exactly halfway in
between. The U.S. Internal Revenue Service (IRS) always rounds 0.50
dollars up, possibly to the benefit of the IRS. A more equitable way
would be to round up this case half the time and round down the other
half. IEEE 754 says that if the least significant bit retained in a halfway
case would be odd, add one; if it’s even, truncate. This method always
creates a 0 in the least significant bit in the tie-breaking case, giving the

rounding mode its name. This mode is the most commonly used, and the
only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the
same results as if the intermediate results were calculated to infinite
precision and then rounded. To support this goal and round to the nearest
even, the standard has a third bit in addition to guard and round; it is set
whenever there are nonzero bits to the right of the round bit. This sticky
bit allows the computer to see the difference between 0.50 … 00 ten and
0.50 … 01ten when rounding.

sticky bit
A bit used in rounding in addition to guard and round that is set
whenever there are nonzero bits to the right of the round bit.

The sticky bit may be set, for example, during addition, when the
smaller number is shifted to the right. Suppose we added 5.01ten × 10

−1 to
2.34ten × 102 in the example above. Even with guard and round, we
would be adding 0.0050 to 2.34, with a sum of 2.3450. The sticky bit
would be set, since there are nonzero bits to the right. Without the sticky
bit to remember whether any 1s were shifted off, we would assume the
number is equal to 2.345000 … 00 and round to the nearest even of 2.34.
With the sticky bit to remember that the number is larger than 2.345000
… 00, we round instead to 2.35.

Elaboration
PowerPC, AMD SSE5, and Intel AVX architectures provide a single
instruction that does a multiply and add on three registers: a = a + (b ×
c). Obviously, this instruction allows potentially higher floating-point
performance for this common operation. Equally important is that instead
of performing two roundings—after the multiply and then after the add—
which would happen with separate instructions, the multiply add
instruction can perform a single rounding after the add. A single
rounding step increases the precision of multiply add. Such operations

with a singlerounding are called fused multiply add. It was added to the

IEEE 754-2008 standard (see Section 3.11).

fused multiply add
A floating-point instruction that performs both a multiply and an add, but
rounds only once after the add.

Summary
The Big Picture that follows reinforces the stored-program concept from
Chapter 2; the meaning of the information cannot be determined just by
looking at the bits, for the same bits can represent a variety of objects. This
section shows that computer arithmetic is finite and thus can disagree with
natural arithmetic. For example, the IEEE 754 standard floating-point
representation

is almost always an approximation of the real number. Computer systems
must take care to minimize this gap between computer arithmetic and
arithmetic in the real world, and programmers at times need to be aware of
the implications of this approximation.

The BIG Picture
Bit patterns have no inherent meaning. They may represent signed
integers, unsigned integers, floating-point numbers, instructions, and so
on. What is represented depends on the instruction that operates on the
bits in the word.

The major difference between computer numbers and numbers in the
real world is that computer numbers have limited size and hence limited
precision; it’s possible to calculate a number too big or too small to be
represented in a word. Programmers must remember these limits and
write programs accordingly.

C type Java
type

Data
transfers Operations

int int lw, sw,
lui

addu, addiu, subu, mult, div,
AND, ANDi, OR, ORi, NOR,
slt, slti

unsigned
int

— lw, sw,
lui

addu, addiu, subu, multu,
divu, AND, ANDi, OR, ORi,
NOR, sltu, sltiu

char — lb, sb,
lui

add, addi, sub, mult, div AND,
ANDi, OR, ORi, NOR, slt,
slti

— char lh, sh,
lui

addu, addiu, subu, multu,
divu, AND, ANDi, OR, ORi,
NOR, sltu, sltiu

float float lwc1,
swc1

add.s, sub.s, mult.s, div.s,
c.eq.s, c.lt.s, c.le.s

double double l.d, s.d add.d, sub.d, mult.d, div.d,
c.eq.d, c.lt.d, c.le.d

Hardware/ Software Interface
In the last chapter, we presented the storage classes of the programming
language C (see the Hardware/Software Interface section in Section 2.7).
The table above shows some of the C and Java data types, the MIPS data
transfer instructions, and instructions that operate on those types that
appear in Chapter 2 and this chapter. Note that Java omits unsigned
integers.

Check Yourself
The revised IEEE 754-2008 standard added a 16-bit floating-point format
with five exponent bits. What do you think is the likely range of numbers
it could represent?

1. 1.0000 00 × 20 to 1.1111 1111 11 × 231, 0
2. ±1.0000 0000 0 × 2−14 to ± 1.1111 1111 1 × 215, ± 0, ± ∞, NaN
3. ±1.0000 0000 00 × 2−14 to ± 1.1111 1111 11 × 215, ± 0, ± ∞, NaN
4. ±1.0000 0000 00 × 2−15 to ± 1.1111 1111 11 × 214, ± 0, ± ∞, NaN

Elaboration
To accommodate comparisons that may include NaNs, the standard
includes ordered and unordered as options for compares. Hence, the full
MIPS instruction set has many flavors of compares to support NaNs.
(Java does not support unordered compares.)

In an attempt to squeeze every last bit of precision from a floating-
point operation, the standard allows some numbers to be represented in
unnormalized form. Rather than having a gap between 0 and the smallest
normalized number, IEEE allows denormalized numbers (also known as
denorms or subnormals). They have the same exponent as zero but a
nonzero fraction. They allow a number to degrade in significance until it
becomes 0, called gradual underflow. For example, the smallest positive
single precision normalized number is

but the smallest single precision denormalized number is

For double precision, the denorm gap goes from 1.0 × 2−1022 to 1.0 ×
2−1074.

The possibility of an occasional unnormalized operand has given
headaches to floating-point designers who are trying to build fast
floating-point units. Hence, many computers cause an exception if an
operand is denormalized, letting software complete the operation.
Although software implementations are perfectly valid, their lower
performance has lessened the popularity of denorms in portable floating-
point software. Moreover, if programmers do not expect denorms, their
programs may surprise them.

3.6 Parallelism and Computer Arithmetic:
Subword Parallelism
Since every desktop microprocessor and smart phone by definition has its
own graphical display, as transistor budgets increased it was inevitable that
support would be added for graphics operations.

Many graphics systems originally used 8 bits to represent each of the
three primary colors plus 8 bits for a location of a pixel. The addition of
speakers and microphones for teleconferencing and video games suggested
support of sound as well. Audio samples need more than 8 bits of precision,
but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords
take up less space when stored in memory (see Section 2.9), but due to the
infrequency of arithmetic operations on these data sizes in typical integer
programs, there was little support beyond data transfers. Architects
recognized that many graphics and audio applications would perform the
same operation on vectors of this data. By partitioning the carry chains
within a 128-bit adder, a processor could use parallelism to perform
simultaneous operations on short vectors of sixteen 8-bit operands, eight
16-bit operands, four 32-bit operands, or two 64-bit operands. The cost of
such partitioned adders was small.

