
 IST.1

Introduction to SystemVerilog and Tutorial

What is SystemVerilog:
• First adopted in 2005 (IEEE 1800-2005) [1] as an IEEE standard (current version IEEE

1800-2012) and an extension and successor of the standard Verilog (IEEE

1364-2005)

• Both a hardware description language and a hardware verification language (HDVL)

• Synthesizable (able to convert to actual hardware circuit) extensions from Accelera’s

Superlog

• Verification (not necessary synthesizable) extensions from Synopsys® OpenVera™

• Higher level of abstraction than Verilog and VHDL. Features inherited from Verilog,

VHDL, C, C++

The hardware description language can be broken into two different categories: the

weakly-typed Verilog/SystemVerilog [2] and the strongly-typed VHDL [3], whose

differences and pros/cons will be discussed in the following paragraphs. The industry

embraces Verilog/SystemVerilog these days due to their advantages described below, but

this doesn’t make VHDL obsolete. In fact, many intellectual property cores (source codes)

are still written in VHDL, so a good hardware designer most likely needs to be familiar

with both languages.

VHDL is a strongly-typed language. That is, its syntax and semantics explicitly represent

all the operations and connections in the circuit, i.e., a designer can easily dictate how his

code synthesizes, with all the data flow, type conversions, and circuit behavior written in

an explicit, straightforward, and self-documenting way. All of the above features make

VHDL closer to the actual circuit implementation and less error-prone. But as a result, its

drawbacks are the lengthiness of the code and the difficulty of implementing very

complicated circuits due to its verbosity. Lacking the higher level abstractions found in

weakly-typed languages, the verification aspect of VHDL is also limited compared to

Verilog/SystemVerilog.

Verilog and SystemVerilog on the other hand, are weakly-typed languages, that is, the

coding reflects more of a functionality of the circuit instead of the actual bit-level wiring.

For example, data type conversion in Verilog/SystemVerilog is done implicitly since all

data types are inherently interchangeable through their natural bit-level representations.

Contrary to the bit-level operation for the VHDL signals, Verilog/SystemVerilog has the

capability to manipulate vectors like in a software language. It also supports complicated

verifications such as assertions and the built-in random stimulus generator. Since much of

the design intentions are implicitly interpreted by the compiler, the coding of

Verilog/SystemVerilog is much more concise, but this also adds a degree of uncertainty

since the designer may not always predict how his code synthesizes precisely.

Example: VHDL vs. Verilog

IST.2

// Tri-state buffer in VHDL, strongly-typed

library IEEE; // Needs to invoke libraries

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity tristate is // Interface declaration

port (inarr : in std_logic_vector (15 downto 0);

 enable: in std_logic;

 outarr: out std_logic_vector (15 downto 0));

end entity;

architecture Behavioral of tristate is // Behavioral architecture declaration

signal out_signal : std_logic_vector (15 downto 0); // Ports and signals are separated

begin

 process (enable) // Behavioral description process

 begin

 if (enable = '0') then // Long behavioral statement

 out_signal <= "ZZZZZZZZZZZZZZZZ";

 else

 out_signal <= inarr;

 end if;

 end process;

outarr <= out_signal;

end Behavioral;

// Tri-state buffer in Verilog, weakly typed

module tristate (inarr, enable, outarr); // Combined Interface and behavioral

input [15:0] inarr; // declaration

input enable;

output [15:0] outarr;

reg [15:0] outarr;

assign outarr = (enable) ? inarr : 16'bz; // C-style conditional statement

endmodule

SystemVerilog specifically, is a superset and a newer standard of Verilog intended to both

more efficiently model and verify complex designs comparing to Verilog. To achieve this,

it incorporates some of the strongly-typed features from VHDL, such as data type casting,

as well as higher abstractions from software languages, such as classes and structs.

SystemVerilog also improves upon the various constructs and syntax to make the coding

more concise. We will focus on SystemVerilog and its syntax, but we will compare its

features against VHDL and Verilog so you can better understand the differences. Below is

 IST.3

an example showing how SystemVerilog greatly reduces the port and data type

declarations comparing to Verilog.

Example: Verilog vs. SystemVerilog

// Verilog module construct

module Verilog (clk, enable, data, out);

// Input port declaration

input clk, enable;

input [2:0] data;

// Output port declaration

output out;

// Optional data type

// declaration

wire clk, reset, enable;

reg out;

always @ (posedge clk)

begin

 if (enable)

 out <= /*do something*/;

end

endmodule

// SystemVerilog module construct

module SysVerilog (input clk, enable,

 input [2:0] data,

 output out);

// Data type always default to

// type logic

always_ff @ (posedge clk)

begin

 if (enable)

 out <= /*do something*/;

end

endmodule

It is important to keep in mind that not all of the constructs in VHDL, Verilog and

SystemVerilog are synthesizable. This is because the verification aspect of these

languages borrows ideologies from software languages to different degrees. Many

constructs (especially in SystemVerilog) are intended for the convenience of simulations

and are therefore non-synthesizable. It is not easy to keep a complete list of

synthesizable/non-synthesizable constructs, especially when the list is not yet standardized

for SystemVerilog [4].

One general way to quickly guess if a specific construct is synthesizable or not is by

looking at its relationship with its actual hardware circuit: if a construct is easily correlating

to some kind of circuits, then it is most likely a synthesizable construct; if a construct is

styled like a software language and it’s hard to imagine it to any hardware component at

all, then it is most likely a non-synthesizable construct. However, since each compiler

vendor defines its own subset of synthesizable constructs, the best way to check if your

code is synthesizable is to see if the compiler generates any error during the compiling

process. We will use the keyword “non-synthesizable” in this tutorial for any

non-synthesizable constructs.

IST.4

Uses both 2-state and 4-state Data Types:

2-state Data Types (0,1)

bit User defined vector size. Default unsigned

byte 8-bit signed integer

shortint 16-bit signed integer

int 32-bit signed integer

longint 64-bit signed integer

4-state Data Types (0, 1, x, z)

logic (reg) User defined vector size. Default unsigned

integer 32-bit signed integer

time 64-bit signed integer

The above synthesizable data types can be enumerated using enum, where its values are

defined by names. Besides the synthesizable data types, SystemVerilog also supports a few

other non-synthesizable data types for verification purposes: time (64-bit unsigned integer

as simulation time units), shortreal (same as float in C), real (same as double in C) and

string (same as string in C).

Note: The logic data type is equivalent to the reg data type. It is introduced in

SystemVerilog intended to replace the commonly used reg data type in Verilog to prevent

misconception, where the latter is often mistaken to be an actual hardware register (it is in

fact just a signal!).

Hierarchy:

• Module and Procedural Blocks
A module is the primary design unit in SystemVerilog. Multiple modules may be

combined to form a larger design. A module-procedural block pair provides design

description.

module declaration provides the external interface to the design entity. It contains

pin-out description, interface description, input-output port definitions etc.

Example:

// Logic is contained within modules

module Example (input clk, enable, // Single-bit inputs, default logic type

 input [2:0] data, // Three-bit input, default logic type

 output out); // Single-bit output, default logic type

initial // “initial” procedure block initializes the variables

begin // Used for testbench initialization. Not synthesizable.

out = 0;

end

 IST.5

always_ff @ (posedge clk) // “always” procedure block triggered by the

begin // rising edge of clk

if (enable)

 out <= /*do something with the input*/;

end

endmodule

Procedure blocks describe the behavior of an entity or its structure (gates, wires, etc.)

using SystemVerilog constructs. There are three types of procedure blocks in

SystemVerilog, and they can be used in a nested fashion.

➢ initial: an initial block is used to initialize testbench assignments and is carried

out only once at the beginning of the execution at time zero. It executes

all the statements within the “begin” and the “end” statement without

waiting. Non-synthesizable.

➢ always: an always block namely execute over and over again throughout the

execution period. When a triggering event occurs, all of the statements

within “begin” and “end” are executed once, and then waits for the next

triggering event to occur. This waiting and executing of the “always”

block is repeated over and over again throughout the circuit operation. To

avoid unintended latches, SystemVerilog has three types of the “always”

procedures.

 always_comb: forcing combinational logic behavior; inferred sensitivity

list (sensitivity list does not need to be explicitly written).

 always_latch: forcing latched logic behavior; inferred sensitivity list.

 always_ff: forcing synthesizable sequential logic behavior; sensitivity list

needs to be explicitly written.

➢ fork-join: a fork-join block parallelizes the statements contained within

themselves. It spawns multiple sequential procedures in parallel in

addition to the original. It is used in testbench to divert simultaneous

tasks (e.g. one parallel procedure executes the design and the other

monitors any abnormalities such as an infinite loop). Non-synthesizable.

 fork-join: waits for all parallel processes to complete before continuing the

sequential process.

 fork-join_any: waits for the first of all the parallel processes to complete

before continuing the sequential process.

 fork-join_none: does not wait for any of the parallel processes to complete

before continuing the sequential process.

Example:

// Logic is contained within modules

module Example (input a, b, z, enable, clk, reset,

 output z);

IST.6

/*==*/

// “always_comb” procedure

always_comb

begin: myComb // “Named block” for readability. The naming does

z = a + b; // nothing, so its presence is not necessary.

end: myComb // End the named block here

/*==*/

// “always_latch” procedure

always_latch

begin

 if (enable) begin

 z <= a + b;

end

end

/*==*/

// “always_ff” procedure triggered by either the rising edge of the reset or the

rising edge of clock

always_ff @ (posedge clk or posedge reset) // ordering within the parenthesis

begin //does not matter

if (reset) begin

 z <= 0;

end else begin

 z <= a + b;

end

end

endmodule

Procedural blocks execute concurrently with respect to each other. Only the statements

within a sequential block (begin-end block) execute sequentially in the order of their

appearance. If there is more than one statement in the module, you will have to either

place them in separate procedural blocks so they execute in parallel or in the same

procedural block with a sequential begin-end block. This is the fundamental

difference between a hardware language like SystemVerilog and a software language.

SystemVerilog is case sensitive, that is, lower case letters are unique from upper case

letters. All SystemVerilog keywords are lower case.

• Ports and Interfaces
Ports are the interconnections between a module and the outside world. There are three

types of ports in Verilog and SystemVerilog:

 IST.7

➢ input: Has a data type of Nets or Registers. Default to be “wire” in Verilog,

and “logic” in SystemVerilog.

➢ output: Has a data type of Nets or Registers. Default to be “reg” in Verilog,

and “logic” in SystemVerilog.

➢ inout: Has a data type of Nets. Default to be “wire” in Verilog, and “logic” in

SystemVerilog.

Notice the differences in the port data type declarations between Verilog and

SystemVerilog. While the port data types are distinguished in Verilog, all the ports in

SystemVerilog share the same logic type. This reduces the coding complexity as

shown in the first example of this tutorial.

Simple combinational logic can be assigned outside of the procedural blocks using the

“assign” statement. The statement is carried out continuously without the need of a

sensitivity list. In this case, the output of some simple logic can be connected directly

to the output port of type logic. The below two examples are two different ways of

implementing an identical AND gate:

Example:

// “assign” statement

module AND_Gate (input a, b,

 output z);

 assign z = a & b;

endmodule

// Prodecure block

module AND_Gate (input a, b,

 output z);

always_comb

begin

z = a & b;

end

endmodule

SystemVerilog has the capability to bundle the module ports together to cut down

repetitions in the module interconnections. This is especially effective in the case where a

master module sends a large number of controlling signals to many slave modules. This is

achieved by using the interface block to group the relevant ports, while using the modport

statement to define the directional views of the ports.

Example:

// Interface declaration

interface Bus #(SIZE=2); // Interface declaration with variable SIZE

 logic [SIZE-1:0] m2s; // Master to slave connection

 logic [SIZE-1:0] s2m; // Slave to master connection

modport master (input s2m, output m2s); // Master view of the interfaces

modport slave (input m2s, output s2m); // Slave view of the interfaces

IST.8

endinterface

// Master module

module Master (Bus.master interface1);

 // Do something using “interface1.m2s” and “interface1.s2m”

endmodule

// Slave module

module Slave (Bus.slave interface2);

 // Do something using “interface2.m2s” and “interface2.s2m”

endmodule

// Top-level module

module Example ();

 Bus myInterface;

 Master myMaster (myInterface);

 Slave mySlave (myInterface);

endmodule

Data Types:
Verilog uses three primary data types: “Nets”, “Registers” and “Constants”, while

SystemVerilog unifies “Nets” and “Registers” into simple logic. We will only

introduce the most commonly used ones here.

• Nets: Represents a physical wire in the circuit for connections between components.

They do not hold any value themselves.

➢ wire: Simple interconnecting wire between the design components.

Syntax: wire; wire [<MSB>:<LSB>]

 Example: wire my1BitWire; wire [3:0] my4BitWire;

➢ supply0, supply1: Wires that are tied to logic ‘0’ (ground) or ‘1’ (power).

 Example: supply0 myGround; supply1 myPower;

• Registers: Variables used to store the value assigned to them until another assignment

changes their value.

➢ logic: unsigned variable. Syntax: logic; logic [<MSB>:<LSB>]

 Example: logic my1BitVariable; logic [3:0] my4BitVariable;

➢ integer: signed variable (32 bits)

 Example: integer myInteger;

 IST.9

➢ real: double-precision floating point variable. Non-synthesizable.

 Example: real myReal;

• Constants:

➢ Integer Constants: Syntax: <sign><size>’<radix><value>

 Sign: “–” for signed negative, else unsigned or signed positive.

 Size: Size of the number in binary bits. Default to 32 bits if unspecified.

 Radix: b (binary), o (octal), d (decimal), h (hexadecimal)

 Value: Value of the number in the form indicated by the radix.

Note: If <size> is smaller than <value>, then the excess bits in <value> are

truncated. If <size> is larger than <value>, then leftmost bits are filled

based on the value of the MSB in <value>. Specifically, a MSB of ‘0’ and

‘1’ is filled with ‘0’, ‘Z’ is filled with ‘Z’, and ‘X’ is filled with ‘X’.

 Examples:

Integer Stored as Comments

1 00000000000000000000000000000001 Default to be 32 bits

-8'hFA 00000101 2’s complement of ‘FA

5'b11010 11010 5 bits of binary

'hF 00000000000000000000000000001111 Default to be 32 bits

6'hF 001111 Extension to 6 bits

6'h8F 001111 Truncation to 6 bits

7'bZ ZZZZZZZ 7 bits of high impedance

➢ Real Numbers (Non-synthesizable.): <value>.<value> or

<mantissa>E<exponent >

 Examples: 1.5; 3.6E3;

Data Structures, Classes and Packages:
Designed like a software language, SystemVerilog supports simple data structures struct

and classes class to package variables and functions for verification purposes. “package”

can also hold variables and functions, but is more equivalent to “namespace” in C language

for sharing common code across modules. This greatly reduces the amount of code

required to model complex circuits comparing to Verilog. While structures are

synthesizable, classes and packages are non-synthesizable.

To initialize the entire structure, use the syntax: <struct_name> = '{<member1_value>,

<member2_value>, …}, where the “'” operator in front of the bracket represents data

casting (from array to struct). It is used to distinguish data casting from concatenation.

To assign a specific member, use: <struct_name>.<member_name> = <member_value>

Example:

IST.10

// Anonymous structure

struct {

logic mybit, // Single-bit logic

int myint, // 32-bit integer

logic [2:0] myarray, // Three-bit array

} mystruct_instance;

// Typed structure (defined somewhere)

typedef struct {

logic mybit, // Single-bit logic

int myint, // 32-bit integer

logic [2:0] myarray, // Three-bit array

} mystruct_type

mystruct_type mystruct_instance; // Struct instance declared elsewhere

// Class (mainly used in verification testbench)

class myclass_name;

 // Class properties

logic mybit, // Single-bit logic

int myint, // 32-bit integer

logic [2:0] myarray, // Three-bit array

// Class method 1 - function that does something and returns something

function int myfunc_get

 return myint;

endfunction

// Class method 2 - task that does something without returning anything

task mytask_set (int i)

 myint = i;

endtask

endclass

/*==*/

// File mypackage.sv

package mypackage_name;

 // Class properties

logic mybit; // Single-bit logic

int myint; // 32-bit integer

logic [2:0] myarray; // Three-bit array

// Class method 1 - function that does something and returns something

function int myfunc_get();

 IST.11

 return myint;

endfunction

// Class method 2 - task that does something without returning anything

task mytask_set (int i);

 myint = i;

endtask

endpackage

// End file mypackage.sv

// File mymodule.sv

`include "mypackage.sv"

import mypackage_name::*; // import everything from the package

// Top-level module

module use_package ();

 /*access package members using mypackage_name::<member_name> */

 int newint = 10;

mypackage_name::mytask_set(newint); // access member function

logic [2:0] newarr = mypackage_name::array; // access member variable

endmodule

// End file mymodule.sv

/*==*/

Data Assignment:
Two types of data assignments are available depending on whether the user wants the

statements to be executed in parallel or sequentially. The two different assignments will

often produce very different results, so it is important to be careful when using the two

different assignments.

• Blocking Assignment: Sequential assignments made with “=” symbol. It blocks the

execution of next statement until the current statement is executed, which

means the assignment results are updated immediately. Analogous to

variable assignment in VHDL.

• Non-blocking Assignment: Parallel assignments made with “<=” symbol. The next

statement is not blocked due to the execution of the current statement,

which means the assignment results are updated only until the end of the

current cycle. Analogous to “:=” in VHDL.

Note: Non-blocking assignment of multiple statements in a single procedural block is

equivalent to single assignments in multiple procedural blocks.

 A general guideline is to use non-blocking assignments for sequential always

block, and blocking assignments for combinational always block.

IST.12

Example: Blocking Assignment

module blocking (input clk, a,

 output b, c);

always_ff @ (posedge clk)

begin

// This is evaluated first serially

 b = a;

// Wait for the above evaluation to

// complete before its own evaluation,

// which makes the final evaluation to

// be c=b=a.

 c = b;

end

endmodule

RTL Synthesis:

Example: Non-blocking Assignment

module nonblocking (input clk, a,

 output b, c);

always_ff @ (posedge clk)

begin

// These two statements are evaluated

// in parallel disregarding the

// dependence upon one another,

// which means b is assigned to a

// independently from c assigned to b

 b <= a;

 c <= b;

end

endmodule

RTL Synthesis:

Simulation:

• Notice that b_blocking and c_blocking holds identical value from a blocking

simulation, while c_non_blocking lags a clock cycle from b_non_blocking from a

non-blocking simulation.

 IST.13

Data Casting:
SystemVerilog can use the “'” operator for conversion between data types.

Example: int'(x) (casting x to type int); signed'(x) (casting x to signed); 5'(x) (casting x to

change to 5 bits in size)

Operators:
Operators can be used in expressions involving signals, variables, or constant object types.

Here are some of the useful operators:

• Arithmetic: +, -, *, /, % (modulus)

• Relational: === (case equality – where ‘X’ and ‘Z’ also have to match precisely),

!== (case inequality), == (logical equality – where only ‘0’ and ‘1’

have to match. Result is ‘X’ if either operand contains ‘X’ or ‘Z’), !=

(logical inequality), <, <=, >, >=

• Logical: ! (logical not), && (logical and), || (logical or)

• Bit-wise Operators: ~ (negation), & (and), ~& (nand), | (or), ~| (nor), ^ (xor),

^~ or ~^ (xnor)

• Concatenation: {,} (used to combine bits). Ex: {a, b[2:0], 3'b010}

• Shift: << (left shift), >> (right shift)

• Replication: {<n>{<m>}} (replicate the value m, n times). Ex: {a, 2{b, c}}

//equivalent to {a, b, c, b, c}

• Conditional: <condition_expr> ? <true_expr> : <false_expr> (select either the true

or the false expression based on the condition expression)

If- Else and If- Else if Statements:

• An if statement executes a block of sequential statements upon matching certain

condition(s).

• It can also include an else component or one or more else if components.

• if statements are only allowed within a procedural block. The statements are

executed sequentially if a conditional match is detected.

• To avoid inferred latches, all outputs should be assigned values on all execution

paths.

• Keep common statements outside of the if- else if statements.

Example: Inference

module if_example (input x, y, z, sel,

 output w);

always_comb

begin: inference

logic s1, s2;

if (sel == 1'b1)

begin

 s1 = x & y;

IST.14

 s2 = s1 ^ z;

 w <= s1 & s2; //Since w gets a value only conditionally, a latch is

end // inferred. Add an “else” statement or default w

end // right after “begin” to avoid latches

endmodule

RTL Synthesis:

• To avoid the inferred latch, assign a default value to w outside the if statement. For

example, you can add “w <= 0;” before the if statement. You can also add the same

statement in the else part using an if- else statement. You will have to do the same

thing even when using always_comb.

Case Statement:
• Equivalent to nested set of if-else if constructs but produces less logic since it does

not force priority order.

• It identifies mutually exclusive blocks of code.

• Since all possible values of select inputs must be covered, use the default clause.

• case statements have to be inside a module. It can be used to describe multiplexors.

• casez statements treat ‘Z’ as don’t cares, where a match is asserted when the rest of

the word matches.

• casex statements treat both ‘X’ and ‘Z’ as don’t cares.

Example: ‘case’ Statement

module case_example(input a, b, sel,

 output c);

always_comb

begin: case_process

 case (sel)

 1'b0 : c = a;

 1'b1 : c = b;

 default : c = 1'b0;

 endcase

end

endmodule

Example: ‘casez’ Statement

module case_example(input a, b, sel,

 output c);

always_comb

begin: case_process

 casez (sel)

 1'z0 : c = a;

 1'zx : c = b;

 default : c = 1'b0;

 endcase

end

endmodule

 IST.15

Note: The ‘case’ example to the left employs precise matching, that is, ‘sel’ has to be

strictly either the value ‘1'b0’ or ‘1'b0’ in order for ‘c’ to receive ‘a’ or ‘b’. As for

the ‘casez’ example to the right, both case items will ignore their own <radix> when

comparing against ‘sel’, since ‘Z’ is treated as don’t cares here. But they still need

to match their <value>. For example, a ‘sel’ of ‘1'h0’ will only match the first case

item, and a ‘1'hF’ will only match the second case item.

• Although case statement and if-else if statements are logically similar,

SystemVerilog will actually interpret them into different physical circuits, as

shown below

Example: 4-to-1 Multiplexer

Design 1:

module mux (input [3:0] Din,

 input [1:0] sel,

 output Dout);

 always_comb

 begin

 if (sel == 1'b00)

 Dout = Din[0];

else if (sel == 1'b01)

 Dout = Din[1];

else if (sel == 1'b10)

 Dout = Din[2];

else

 Dout = Din[3];

 end

endmodule

RTL Synthesis:

procedural block

module mux Din

sel

Dout

4

2

IST.16

Design 2: (Produces less logic)

module mux (input [3:0] Din,

 input [1:0] sel,

 output Dout);

 always_comb

 begin

 case (sel)

 2'b00 : Dout = Din[0];

 2'b01 : Dout = Din[1];

 2'b10 : Dout = Din[2];

 default : Dout = Din[3];

 endcase

 end

endmodule

RTL Synthesis:

• Notice how the case statement gives a cleaner circuit with less logic. In general,

although there are many different syntactic approaches to achieve the same logical

functionality, most often one will be better than the other due to the translation of

the circuit. Therefore it is somewhat important to try to write SystemVerilog in a

nice, organized way.

 IST.17

Creating Hierarchical Design Using Components:
As mentioned earlier, you can create larger designs using modules as the components that

make up the design. One module can instantiate other modules as components of it. One

module can use different modules as components as well as instantiate multiple copies of

the same module.

Example: Creating a 4-bit adder using a full-adder component

Design Entity Full-Adder

module full_adder (input x, y, z,

 output s, c);

 assign s = x^y^z;

 assign c = (x&y)|(y&z)|(x&z);

endmodule

Use component full_adder to create a 4-bit adder:

Design Entity ADDER4 that uses multiple full-adder components

module ADDER4 (input [3:0] A, B,

 input c_in,

 output [3:0] S,

 output c_out);

 // Internal carries in the 4-bit adder

 logic c0, c1, c2;

/*==*/

 // Netlists with named (explicit) port connection

x y

s
c z
FA1

A1 B1

c1

S1

x y

s
c z
FA0

A0 B0

c0

 S0

x y

s
c z
FA3

A3 B3

c_out

 S3

x y

s
c z
FA2

A2 B2

c2

 S2

c_in

ADDER4

IST.18

// Syntax: <module> <name>(.<parameter_name> (<connection_name>), …)

 full_adder FA0 (.x (A[0]), .y (B[0]), .z (c_in), .s (S[0]), .c (c0));

 full_adder FA1 (.x (A[1]), .y (B[1]), .z (c0), .s (S[1]), .c (c1));

 full_adder FA2 (.x (A[2]), .y (B[2]), .z (c1), .s (S[2]), .c (c2));

 full_adder FA3 (.x (A[3]), .y (B[3]), .z (c2), .s (S[3]), .c (c_out));

endmodule

RTL Synthesis:

To simplify the port connections and coding redundancy, SystemVerilog introduces

implicit “.name” and “.*” port connections. This is based on the fact that most of the port

connections share the same port names on each end of the connection. For the “.name”

implicit port connection, SystemVerilog automatically connects ports that share the same

name and size with the connecting wire. For the “.*” port connection, SystemVerilog

automatically connects ports that share the same name and size without the need of

rewriting them.

Example: .name connection

module top_level(input clock, reset, in,

 output out);

 IST.19

logic tmp;

logic [2:0] data;

// module1 myModule1(input clock, reset, in, output result, output [2:0] data)

module1 myModule1(.clock, .reset, .in, .result(tmp), .data(data));

// module2 myModule2(input clock, reset, feed, output [1:0] data, output out)

module2 myModule2(.clock, .reset, .feed(tmp), .data(data[1:0]), .out);

endmodule

Note: The example above employs implicit port connection. If the name and size of the

connections match (‘clock’, ‘reset’, ‘in’ and ‘out’ port in this case), then the

matching ports will be automatically connected. However, if the name

(‘result’/’feed’ ports) or the size (‘[2:0]data’/‘[1:0]data’ ports) of the connecting

ports doesn’t match, we will need to write out the connection explicitly by adding a

parenthesis behind the port name and indicate the specific wiring.

Example: .* connection

module top_level(input clock, reset, in,

 output out);

logic tmp;

logic [1:0] data;

// .* “Wild card” port connection. Only need to write out the connection if the

// name or size doesn’t match

module1 myModule1(.*, .result(tmp));

module2 myModule2(.*, .feed(tmp));

endmodule

Note: In both implicit connections, an unconnected port must be explicitly named with

blank connection. Ex: .<port_name>()

IST.20

More Examples:
Example: Sequential Circuit

module counter (input clk, asynch_clr, enable, up_down,

 output [7:0] Q);

always_ff @ (posedge clk or posedge asynch_clr)

/* Placing “posedge asynch_clr” in the sensitivity list enables clear whenever

 asynch_clr is on a rising edge. If “posedge asynch_clr” is not in the sensitivity

 list, then the circuit will only be cleared if asynch_clr is high during a rising edge

 of the clk, i.e., the circuit will be synchronously cleared */

begin

if (asynch_clr)

 Q <= 8'b0;

else if (enable)

 if (up_down)

 Q <= Q + 1'b1;

 else

 Q <= Q - 1'b1;

end

endmodule

RTL Synthesis:

8-bit Up-Down Counter

enable

clk

Q(7)Q(6) Q(1)Q(0)

 up_down

asynch_clr

 IST.21

Example: N-Bit Left Shift Register

// #(N=4) is a variable parameter

module shiftReg #(N = 4) (input Clk, Shift_En, Shift_In, Load,

 input [N-1:0] Din,

 output [N-1:0] Dout,

 output Shift_Out);

always_ff @ (posedge Clk)

begin

if (Load)

 Dout <= Din;

else if (Shift_En)

 Dout <= { Dout[N-2:0], Shift_In }; // Concatenation

end

assign Shift_Out = Dout[N-1];

endmodule // shiftReg

RTL Synthesis:

4-Bit Register
“reg_4”

Din

Shift_In

Load

Shift_En

Clk

Shift_Out

Data_Out

4

4

IST.22

State Machine Design:
Example: Control Unit

module control (input Clk, Reset, Execute, LoadA, LoadB,

 output Shift_En, Ld_A, Ld_B);

 enum logic [2:0] {A, B, C, D, E, F} curr_state, next_state; // Internal state logic

// Assign 'next_state' based on 'state' and 'Execute'

always_ff @ (posedge Clk or posedge Reset) // Sequential logic

begin

 if (Reset)

 curr_state <= A; // alternatively use the enum method

 else // <enum_name>.first to point to the first enum value

 curr_state <= next_state;

 end

// Assign outputs based on ‘state’

always_comb

begin

 // Default to be self-looping (stay in current state unless triggered), so

 // therefore no potential latch will be inferred

 next_state = curr_state;

 // The keyword “unique” asserts that there are no overlapping cases. It will

 // generate warnings when multiple case item expressions are true at the

 // same time

unique case (curr_state)

 // use <enum_name> = <enum_value> to assign the next state, or

 // use <enum_name>.next to go to the immediate next state

 A : if (Execute) // conditional state transition

 next_state = B;

 B : next_state = C; // deterministic state transition

 C : next_state = D;

 D : next_state = E;

 E : next_state = F;

Control
Reset

LoadA

LoadB

Execute

Clk

Shift_En

Ld_A

Ld_B

 IST.23

 F : if (~Execute)

 next_state = A;

 endcase

 end

// Assign outputs based on ‘state’

always_comb

begin

case (curr_state)

 A:

 begin

 Ld_A = LoadA;

 Ld_B = LoadB;

 Shift_En = 1'b0;

 end

 F:

 begin

 Ld_A = 1'b0;

 Ld_B = 1'b0;

 Shift_En = 1'b0;

 end

 default:

 begin

 Ld_A = 1'b0;

 Ld_B = 1'b0;

 Shift_En = 1'b1;

 end

 endcase

 end

endmodule

RTL Synthesis:

Verification:
After designing and implementing your circuit in SystemVerilog, the next step is to make

sure that it works according to the design requirement free from bugs through the

verification process. A simulation instantiates the top level module of your circuit and

IST.24

does the following things:

• Generates the input vector waveform

• Apply the input waveform to the DUT (your circuit)

• Outputs the response

Once the circuit response is obtained, you can then verify it to see if it complies with the

design requirement. If any response does not comply properly, you should trace back the

specific faulty response all the way back to where the design flaw is generated and try to fix

it. You should always verify your circuit as complete as possible to avoid unexpected

flaws.

There are two ways to verify your circuit. The first one is using the SystemVerilog

testbench module. SystemVerilog is a very powerful verification language, with

constructs borrowed from the software languages. The compiler will generate the input

signals according to the constructed testbench module, and the simulated result will be

outputted. The testbench approach is especially useful when dealing with large and

complicated circuits, which usually requires the generation of numerous inputs and the

verification of numerous outputs.

If your circuit is simple and straightforward, then using the GUI waveform generator

approach might be more convenient. Many HDL compilers come with built-in or

custom-made GUI waveform generators which allow the designers to directly generate the

input signals and view the output signals graphically. The Quartus II compiler we will be

using employs such a custom-made GUI waveform generator. Please refer to IQT

document for a tutorial on the ModelSim-Altera GUI verification, and on using testbenches

in ModelSim-Altera.

Other Notes/Hints:

• A design that simulates is not guaranteed to synthesize. Simulation tools allow

simulating designs that may not be physically possible to implement.

• It is always a good idea to assign values to outputs in all possible cases for any

diverging statement. This way we can avoid inferred latches. If we do not specify the

value of a signal for some input combination, then the design will have inferred

latch(es) because it will try to hold the old value of the signal.

• Keep in mind that HDL statements are usually executed concurrently and not

sequentially.

▪ When a value is assigned to a signal, it does not take effect until the next simulation

cycle, unless you specify it to be updated immediately, i.e., through the blocking

statement.

• Include all inputs that can change the outputs in the sensitivity list of a procedure to

avoid different circuit behavior from simulation and synthesis.

▪ You can manipulate when the procedure executes by including/excluding certain

inputs from the sensitivity list, but that will only work for the simulation model. If

the synthesized design is combinational, then the logic will respond to events on

any inputs, not just the inputs in the sensitivity list.

 IST.25

• SystemVerilog allows delay/wait statements, but that is only guaranteed during

simulation. The synthesized design may not have similar delays.

▪ For example: #5 x <= y; // delay x <= y by 5 time units.

➢ This is allowed, but synthesis behavior is not guaranteed.

• SystemVerilog compilers generally allow looping statements (for, while, do…while,

…), but synthesis tools will only be able to synthesize it if the statement can be unrolled

and determined during the synthesis, i.e., the looping statements are to save repetitive

statements and are not intended to execute non-determined cyclings.

• Do not specify initial values in variable declarations. Synthesis compilers cannot

synthesize the initial procedural block. Initial values can be assigned explicitly under a

controlling signal (e.g. reset).

• Assign don’t care values to signals when possible for default cases. It may allow the

synthesis compiler to produce a better design.

• Case statements produce less logic than if-else statements since if-else statements

produce priority logic also.

• Do not assign value to the same signal via multiple statements that can execute

simultaneously. The compiler will either handle only the last assignment or produce an

error.

• Write your code for synthesis rather than just simulation, as you will need to synthesize

your designs for all experiments involving SystemVerilog.

References:

 [1] “SystemVerilog 3.1a Language Reference Manual, Accellera's Extensions to Verilog”,

Accellera, 2004. Available at: http://www.eda.org/sv/

 [2] S. Sutherland, S. Davidmann and P. Flake, SystemVerilog for Design: A Guide to

Using SystemVerilog for Hardware Design and Modeling, 2nd ed. Springer, 2006.

 [3] Yalamanchili, Sudhakar. Introductory VHDL – From Simulation to Synthesis. New

Jersey: Prentice-Hall, 2001.

 [4] “A Proposal for a Standard Synthesizable Subset for SystemVerilog-2005: What the

IEEE failed to Define”, by Stuart Sutherland. presented at DVCon, March 2006.

Available at

http://www.sutherland-hdl.com/papers/2006-DVCon_SystemVerilog_synthesis_subs

et_paper.pdf

http://www.eda.org/sv/
http://www.sutherland-hdl.com/papers/2006-DVCon_SystemVerilog_synthesis_subset_paper.pdf
http://www.sutherland-hdl.com/papers/2006-DVCon_SystemVerilog_synthesis_subset_paper.pdf

