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Introduction to SystemVerilog and Tutorial 
 

 
 
What is SystemVerilog:  
• First adopted in 2005 (IEEE 1800-2005) [1] as an IEEE standard (current version IEEE 

1800-2012) and an extension and successor of the standard Verilog (IEEE 

1364-2005) 

• Both a hardware description language and a hardware verification language (HDVL) 

• Synthesizable (able to convert to actual hardware circuit) extensions from Accelera’s 

Superlog 

• Verification (not necessary synthesizable) extensions from Synopsys® OpenVera™ 

• Higher level of abstraction than Verilog and VHDL.  Features inherited from Verilog, 

VHDL, C, C++ 

 

The hardware description language can be broken into two different categories: the 

weakly-typed Verilog/SystemVerilog [2] and the strongly-typed VHDL [3], whose 

differences and pros/cons will be discussed in the following paragraphs.  The industry 

embraces Verilog/SystemVerilog these days due to their advantages described below, but 

this doesn’t make VHDL obsolete.  In fact, many intellectual property cores (source codes) 

are still written in VHDL, so a good hardware designer most likely needs to be familiar 

with both languages. 

 

VHDL is a strongly-typed language. That is, its syntax and semantics explicitly represent 

all the operations and connections in the circuit, i.e., a designer can easily dictate how his 

code synthesizes, with all the data flow, type conversions, and circuit behavior written in 

an explicit, straightforward, and self-documenting way. All of the above features make 

VHDL closer to the actual circuit implementation and less error-prone. But as a result, its 

drawbacks are the lengthiness of the code and the difficulty of implementing very 

complicated circuits due to its verbosity. Lacking the higher level abstractions found in 

weakly-typed languages, the verification aspect of VHDL is also limited compared to 

Verilog/SystemVerilog. 

 

Verilog and SystemVerilog on the other hand, are weakly-typed languages, that is, the 

coding reflects more of a functionality of the circuit instead of the actual bit-level wiring.  

For example, data type conversion in Verilog/SystemVerilog is done implicitly since all 

data types are inherently interchangeable through their natural bit-level representations.  

Contrary to the bit-level operation for the VHDL signals, Verilog/SystemVerilog has the 

capability to manipulate vectors like in a software language.  It also supports complicated 

verifications such as assertions and the built-in random stimulus generator.  Since much of 

the design intentions are implicitly interpreted by the compiler, the coding of 

Verilog/SystemVerilog is much more concise, but this also adds a degree of uncertainty 

since the designer may not always predict how his code synthesizes precisely. 

 

 

Example:  VHDL vs. Verilog 
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// Tri-state buffer in VHDL, strongly-typed 

library IEEE;                                           // Needs to invoke libraries 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity tristate is                                         // Interface declaration  

port ( inarr : in std_logic_vector (15 downto 0); 

           enable: in std_logic; 

           outarr: out std_logic_vector (15 downto 0)); 

end entity; 

 

architecture Behavioral of tristate is       // Behavioral architecture declaration 

signal out_signal : std_logic_vector (15 downto 0);  // Ports and signals are separated 

begin 

 process (enable)                            // Behavioral description process 

 begin 

    if (enable = '0') then                   // Long behavioral statement 

       out_signal <= "ZZZZZZZZZZZZZZZZ"; 

    else 

       out_signal <= inarr; 

    end if; 

 end process; 

outarr <= out_signal; 

end Behavioral; 

 

// Tri-state buffer in Verilog, weakly typed 

module tristate (inarr, enable, outarr);    // Combined Interface and behavioral  

input [15:0] inarr;                                                                       // declaration 

input enable; 

output [15:0] outarr; 

 

reg [15:0] outarr; 

 

assign outarr = (enable) ? inarr : 16'bz;  // C-style conditional statement 

endmodule 

 

SystemVerilog specifically, is a superset and a newer standard of Verilog intended to both 

more efficiently model and verify complex designs comparing to Verilog.  To achieve this, 

it incorporates some of the strongly-typed features from VHDL, such as data type casting, 

as well as higher abstractions from software languages, such as classes and structs.  

SystemVerilog also improves upon the various constructs and syntax to make the coding 

more concise.  We will focus on SystemVerilog and its syntax, but we will compare its 

features against VHDL and Verilog so you can better understand the differences.  Below is 
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an example showing how SystemVerilog greatly reduces the port and data type 

declarations comparing to Verilog.   

 

Example:  Verilog vs. SystemVerilog 

 

// Verilog module construct 

module Verilog (clk, enable, data, out); 

// Input port declaration 

input               clk, enable; 

input   [2:0]    data; 

// Output port declaration 

output             out; 

// Optional data type 

//                 declaration 

wire                 clk, reset, enable; 

reg                   out; 

 

always @ (posedge clk) 

begin 

   if (enable)  

      out <= /*do something*/; 

end 

endmodule 

 

// SystemVerilog module construct 

module SysVerilog (input   clk, enable,  

                                  input  [2:0] data, 

                                  output         out); 

// Data type always default to 

//                type logic 

 

always_ff @ (posedge clk)  

begin  

   if (enable)  

      out <= /*do something*/; 

end 

endmodule 

 

 

 

 

 

 

It is important to keep in mind that not all of the constructs in VHDL, Verilog and 

SystemVerilog are synthesizable.  This is because the verification aspect of these 

languages borrows ideologies from software languages to different degrees.   Many 

constructs (especially in SystemVerilog) are intended for the convenience of simulations 

and are therefore non-synthesizable.  It is not easy to keep a complete list of 

synthesizable/non-synthesizable constructs, especially when the list is not yet standardized 

for SystemVerilog [4].  

 

One general way to quickly guess if a specific construct is synthesizable or not is by 

looking at its relationship with its actual hardware circuit: if a construct is easily correlating 

to some kind of circuits, then it is most likely a synthesizable construct; if a construct is 

styled like a software language and it’s hard to imagine it to any hardware component at 

all, then it is most likely a non-synthesizable construct.  However, since each compiler 

vendor defines its own subset of synthesizable constructs, the best way to check if your 

code is synthesizable is to see if the compiler generates any error during the compiling 

process.  We will use the keyword “non-synthesizable” in this tutorial for any 

non-synthesizable constructs.  
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Uses both 2-state and 4-state Data Types: 

2-state Data Types (0,1) 

bit User defined vector size.  Default unsigned 

byte 8-bit signed integer 

shortint 16-bit signed integer 

int 32-bit signed integer 

longint 64-bit signed integer 

4-state Data Types (0, 1, x, z) 

logic (reg) User defined vector size.  Default unsigned 

integer 32-bit signed integer 

time 64-bit signed integer 

 

The above synthesizable data types can be enumerated using enum, where its values are 

defined by names. Besides the synthesizable data types, SystemVerilog also supports a few 

other non-synthesizable data types for verification purposes: time (64-bit unsigned integer 

as simulation time units), shortreal (same as float in C), real (same as double in C) and 

string (same as string in C). 

 

Note: The logic data type is equivalent to the reg data type.  It is introduced in 

SystemVerilog intended to replace the commonly used reg data type in Verilog to prevent 

misconception, where the latter is often mistaken to be an actual hardware register (it is in 

fact just a signal!). 

 

 

Hierarchy: 

• Module and Procedural Blocks 
A module is the primary design unit in SystemVerilog. Multiple modules may be 

combined to form a larger design. A module-procedural block pair provides design 

description. 

 

module declaration provides the external interface to the design entity. It contains 

pin-out description, interface description, input-output port definitions etc. 

 

Example:   

 

// Logic is contained within modules 

module Example (input               clk, enable,    // Single-bit inputs, default logic type 

                              input    [2:0]   data,               // Three-bit input, default logic type 

                              output             out);              // Single-bit output, default logic type 

 

initial                                // “initial” procedure block initializes the variables 

begin                                 // Used for testbench initialization. Not synthesizable. 

out = 0; 

end 
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always_ff @ (posedge clk)  // “always” procedure block triggered by the  

begin                                                                             // rising edge of clk 

if (enable)  

   out <= /*do something with the input*/; 

end 

endmodule 

 

Procedure blocks describe the behavior of an entity or its structure (gates, wires, etc.) 

using SystemVerilog constructs.  There are three types of procedure blocks in 

SystemVerilog, and they can be used in a nested fashion. 

➢ initial: an initial block is used to initialize testbench assignments and is carried 

out only once at the beginning of the execution at time zero.  It executes 

all the statements within the “begin” and the “end” statement without 

waiting.  Non-synthesizable. 

 

➢ always: an always block namely execute over and over again throughout the 

execution period.  When a triggering event occurs, all of the statements 

within “begin” and “end” are executed once, and then waits for the next 

triggering event to occur.  This waiting and executing of the “always” 

block is repeated over and over again throughout the circuit operation.  To 

avoid unintended latches, SystemVerilog has three types of the “always” 

procedures. 

 always_comb: forcing combinational logic behavior; inferred sensitivity 

list (sensitivity list does not need to be explicitly written). 

 always_latch: forcing latched logic behavior; inferred sensitivity list. 

 always_ff: forcing synthesizable sequential logic behavior; sensitivity list 

needs to be explicitly written. 

 

➢ fork-join: a fork-join block parallelizes the statements contained within 

themselves. It spawns multiple sequential procedures in parallel in 

addition to the original.  It is used in testbench to divert simultaneous 

tasks (e.g. one parallel procedure executes the design and the other 

monitors any abnormalities such as an infinite loop).  Non-synthesizable. 

 fork-join: waits for all parallel processes to complete before continuing the 

sequential process. 

 fork-join_any: waits for the first of all the parallel processes to complete 

before continuing the sequential process. 

 fork-join_none: does not wait for any of the parallel processes to complete 

before continuing the sequential process. 

 

Example:   

 

// Logic is contained within modules 

module Example (input    a, b, z, enable, clk, reset,  

                              output  z);  
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/*========================================================*/ 

// “always_comb” procedure 

 

always_comb  

begin: myComb       // “Named block” for readability.  The naming does  

z = a + b;                           // nothing, so its presence is not necessary. 

end: myComb          // End the named block here 

 

/*========================================================*/ 

// “always_latch” procedure 

 

always_latch 

begin 

 if (enable) begin 

   z <= a + b; 

end 

end 

 

/*========================================================*/ 

// “always_ff” procedure triggered by either the rising edge of the reset or the 

rising edge of clock 

 

always_ff @ (posedge clk or posedge reset)   // ordering within the parenthesis  

begin                                                                                             //does not matter 

if (reset) begin 

   z <= 0; 

end else begin 

   z <= a + b; 

end 

end 

endmodule 

 

Procedural blocks execute concurrently with respect to each other.  Only the statements 

within a sequential block (begin-end block) execute sequentially in the order of their 

appearance.  If there is more than one statement in the module, you will have to either 

place them in separate procedural blocks so they execute in parallel or in the same 

procedural block with a sequential begin-end block.  This is the fundamental 

difference between a hardware language like SystemVerilog and a software language. 

 

SystemVerilog is case sensitive, that is, lower case letters are unique from upper case 

letters.  All SystemVerilog keywords are lower case.   

 

• Ports and Interfaces 
Ports are the interconnections between a module and the outside world.  There are three 

types of ports in Verilog and SystemVerilog: 
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➢ input: Has a data type of Nets or Registers.  Default to be “wire” in Verilog, 

and “logic” in SystemVerilog. 

➢ output: Has a data type of Nets or Registers.  Default to be “reg” in Verilog, 

and “logic” in SystemVerilog. 

➢ inout: Has a data type of Nets.   Default to be “wire” in Verilog, and “logic” in 

SystemVerilog. 

 

Notice the differences in the port data type declarations between Verilog and 

SystemVerilog.  While the port data types are distinguished in Verilog, all the ports in 

SystemVerilog share the same logic type.  This reduces the coding complexity as 

shown in the first example of this tutorial. 

 

Simple combinational logic can be assigned outside of the procedural blocks using the 

“assign” statement.  The statement is carried out continuously without the need of a 

sensitivity list.  In this case, the output of some simple logic can be connected directly 

to the output port of type logic.  The below two examples are two different ways of 

implementing an identical AND gate: 

 

Example:   

 

// “assign” statement 

module AND_Gate (input    a, b, 

                                  output  z); 

  

 assign z = a & b; 

 

endmodule 

 

 

 

 

 

 

// Prodecure block 

module AND_Gate (input    a, b, 

                                  output  z); 

 

always_comb 

begin  

z = a & b; 

end 

 

endmodule 

 

SystemVerilog has the capability to bundle the module ports together to cut down 

repetitions in the module interconnections.  This is especially effective in the case where a 

master module sends a large number of controlling signals to many slave modules.  This is 

achieved by using the interface block to group the relevant ports, while using the modport 

statement to define the directional views of the ports. 

 

Example:   

 

// Interface declaration 

interface Bus #(SIZE=2);  // Interface declaration with variable SIZE 

 logic  [SIZE-1:0]  m2s;        // Master to slave connection 

 logic  [SIZE-1:0]  s2m;        // Slave to master connection 

  

modport master (input s2m, output m2s);   // Master view of the interfaces 

modport slave (input m2s, output s2m);     // Slave view of the interfaces 
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endinterface 

 

// Master module 

module Master (Bus.master interface1); 

  

 // Do something using “interface1.m2s” and “interface1.s2m” 

 

endmodule 

 

// Slave module 

module Slave (Bus.slave interface2); 

  

 // Do something using “interface2.m2s” and “interface2.s2m” 

 

endmodule 

 

// Top-level module 

module Example (); 

  

 Bus      myInterface; 

 Master  myMaster (myInterface); 

 Slave    mySlave (myInterface); 

 

endmodule 

 

 

Data Types: 
Verilog uses three primary data types: “Nets”, “Registers” and “Constants”, while 

SystemVerilog unifies “Nets” and “Registers” into simple logic.  We will only 

introduce the most commonly used ones here.   

 

• Nets: Represents a physical wire in the circuit for connections between components.  

They do not hold any value themselves. 

➢ wire: Simple interconnecting wire between the design components.   

Syntax: wire; wire [<MSB>:<LSB>] 

 Example: wire my1BitWire; wire [3:0] my4BitWire; 

➢ supply0, supply1: Wires that are tied to logic ‘0’ (ground) or ‘1’ (power). 

 Example: supply0 myGround; supply1 myPower; 

 

• Registers: Variables used to store the value assigned to them until another assignment 

changes their value. 

➢ logic: unsigned variable.  Syntax: logic; logic [<MSB>:<LSB>] 

 Example: logic my1BitVariable; logic [3:0] my4BitVariable; 

➢ integer: signed variable (32 bits)  

 Example: integer myInteger; 
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➢ real: double-precision floating point variable.  Non-synthesizable. 

 Example: real myReal; 

 

• Constants: 

➢ Integer Constants: Syntax: <sign><size>’<radix><value> 

 Sign: “–” for signed negative, else unsigned or signed positive. 

 Size: Size of the number in binary bits.  Default to 32 bits if unspecified. 

 Radix: b (binary), o (octal), d (decimal), h (hexadecimal) 

 Value: Value of the number in the form indicated by the radix. 

 

Note: If <size> is smaller than <value>, then the excess bits in <value> are 

truncated.  If <size> is larger than <value>, then leftmost bits are filled 

based on the value of the MSB in <value>.  Specifically, a MSB of ‘0’ and 

‘1’ is filled with ‘0’, ‘Z’ is filled with ‘Z’, and ‘X’ is filled with ‘X’. 

 

 Examples:  

 

Integer Stored as Comments 

1 00000000000000000000000000000001 Default to be 32 bits 

-8'hFA 00000101 2’s complement of ‘FA 

5'b11010 11010 5 bits of binary 

'hF 00000000000000000000000000001111 Default to be 32 bits 

6'hF 001111 Extension to 6 bits 

6'h8F 001111 Truncation to 6 bits 

7'bZ ZZZZZZZ 7 bits of high impedance 

 

➢ Real Numbers (Non-synthesizable.): <value>.<value> or 

<mantissa>E<exponent > 

 Examples: 1.5; 3.6E3; 

 
 
Data Structures, Classes and Packages: 
Designed like a software language, SystemVerilog supports simple data structures struct 

and classes class to package variables and functions for verification purposes.  “package” 

can also hold variables and functions, but is more equivalent to “namespace” in C language 

for sharing common code across modules.  This greatly reduces the amount of code 

required to model complex circuits comparing to Verilog.  While structures are 

synthesizable, classes and packages are non-synthesizable. 

 

To initialize the entire structure, use the syntax: <struct_name> = '{<member1_value>, 

<member2_value>, …}, where the “'” operator in front of the bracket represents data 

casting (from array to struct).  It is used to distinguish data casting from concatenation. 

 

To assign a specific member, use: <struct_name>.<member_name> = <member_value> 

 

Example:   
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// Anonymous structure 

struct { 

logic               mybit,              // Single-bit logic 

int                  myint,              // 32-bit integer 

logic    [2:0]   myarray,          // Three-bit array  

} mystruct_instance; 

 

// Typed structure (defined somewhere) 

typedef struct { 

logic               mybit,              // Single-bit logic 

int                  myint,              // 32-bit integer 

logic    [2:0]   myarray,          // Three-bit array  

} mystruct_type 

 

mystruct_type  mystruct_instance;        // Struct instance declared elsewhere 

 

// Class (mainly used in verification testbench) 

class myclass_name; 

 // Class properties 

logic               mybit,              // Single-bit logic 

int                  myint,              // 32-bit integer 

logic    [2:0]   myarray,          // Three-bit array  

 

// Class method 1 - function that does something and returns something 

function int myfunc_get 

 return myint;   

endfunction 

 

// Class method 2 - task that does something without returning anything 

task mytask_set (int i) 

 myint = i; 

endtask 

 

endclass 

 

/*========================================================*/ 

// File mypackage.sv 

package mypackage_name; 

 // Class properties 

logic               mybit;              // Single-bit logic 

int                  myint;              // 32-bit integer 

logic    [2:0]   myarray;          // Three-bit array  

 

// Class method 1 - function that does something and returns something 

function int myfunc_get(); 
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 return myint;  

endfunction 

 

// Class method 2 - task that does something without returning anything 

task mytask_set (int i); 

 myint = i; 

endtask 

 

endpackage 

// End file mypackage.sv 

 

// File mymodule.sv 

`include "mypackage.sv" 

import mypackage_name::*;       // import everything from the package 

 

// Top-level module 

module use_package (); 

  

    /*access package members using mypackage_name::<member_name> */  

    int     newint = 10; 

mypackage_name::mytask_set(newint);             // access member function 

logic [2:0] newarr = mypackage_name::array;   // access member variable 

 

endmodule 

// End file mymodule.sv 

/*========================================================*/ 

 
Data Assignment: 
Two types of data assignments are available depending on whether the user wants the 

statements to be executed in parallel or sequentially.  The two different assignments will 

often produce very different results, so it is important to be careful when using the two 

different assignments. 

 

• Blocking Assignment: Sequential assignments made with “=” symbol.  It blocks the 

execution of next statement until the current statement is executed, which 

means the assignment results are updated immediately.  Analogous to 

variable assignment in VHDL. 

• Non-blocking Assignment: Parallel assignments made with “<=” symbol.  The next 

statement is not blocked due to the execution of the current statement, 

which means the assignment results are updated only until the end of the 

current cycle.  Analogous to “:=” in VHDL. 

 

Note: Non-blocking assignment of multiple statements in a single procedural block is 

equivalent to single assignments in multiple procedural blocks. 

           A general guideline is to use non-blocking assignments for sequential always 

block, and blocking assignments for combinational always block. 
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Example: Blocking Assignment 

 

module blocking (input clk, a,  

                              output b, c); 

 

always_ff @ (posedge clk) 

begin 

// This is evaluated first serially 

  b = a; 

// Wait for the above evaluation to  

//    complete before its own evaluation, 

//    which makes the final evaluation to  

//    be c=b=a. 

  c = b;  

end 

endmodule 

 

RTL Synthesis: 

Example: Non-blocking Assignment 

 

module nonblocking (input clk, a,  

                                    output b, c); 

 

always_ff @ (posedge clk) 

begin 

// These two statements are evaluated 

//     in parallel disregarding the  

//     dependence upon one another,  

//     which means b is assigned to a  

//     independently from c assigned to b 

 b <= a; 

  c <= b; 

end 

endmodule 

 

RTL Synthesis: 

 

 
 
 

Simulation: 

• Notice that b_blocking and c_blocking holds identical value from a blocking 

simulation, while c_non_blocking lags a clock cycle from b_non_blocking from a 

non-blocking simulation. 
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Data Casting: 
SystemVerilog can use the “'” operator for conversion between data types. 

 

Example: int'(x) (casting x to type int); signed'(x) (casting x to signed); 5'(x) (casting x to 

change to 5 bits in size) 

 

Operators: 
Operators can be used in expressions involving signals, variables, or constant object types. 

Here are some of the useful operators: 

• Arithmetic: +, -, *, /, % (modulus) 

• Relational: === (case equality – where ‘X’ and ‘Z’ also have to match precisely), 

!== (case inequality), == (logical equality – where only ‘0’ and ‘1’ 

have to match.  Result is ‘X’ if either operand contains ‘X’ or ‘Z’), != 

(logical inequality), <, <=, >, >= 

• Logical: ! (logical not), && (logical and), || (logical or) 

• Bit-wise Operators: ~ (negation), & (and), ~& (nand), | (or), ~| (nor), ^ (xor),                                     

^~ or ~^ (xnor) 

• Concatenation: {,} (used to combine bits).  Ex: {a, b[2:0], 3'b010} 

• Shift: << (left shift), >> (right shift) 

• Replication: {<n>{<m>}} (replicate the value m, n times). Ex: {a, 2{b, c}}  

//equivalent to {a, b, c, b, c} 

• Conditional: <condition_expr> ? <true_expr> : <false_expr> (select either the true 

or the false expression based on the condition expression) 

 

If- Else and If- Else if Statements: 

• An if statement executes a block of sequential statements upon matching certain 

condition(s).  

• It can also include an else component or one or more else if components.  

• if statements are only allowed within a procedural block. The statements are 

executed sequentially if a conditional match is detected.  

• To avoid inferred latches, all outputs should be assigned values on all execution 

paths. 

• Keep common statements outside of the if- else if statements. 

 

Example: Inference   

 

module if_example (input x, y, z, sel,  

                                  output w); 

 

always_comb 

begin: inference         

logic     s1, s2; 

       

if (sel == 1'b1) 

begin 

       s1 = x & y; 
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   s2 = s1 ^ z; 

   w <= s1 & s2;   //Since w gets a value only conditionally, a latch is 

end                     // inferred.  Add an “else” statement or default w  

end                                      // right after “begin” to avoid latches 

endmodule 

 

RTL Synthesis: 

 
 

• To avoid the inferred latch, assign a default value to w outside the if statement. For 

example, you can add “w <= 0;” before the if statement. You can also add the same 

statement in the else part using an if- else statement.  You will have to do the same 

thing even when using always_comb. 

 

 

Case Statement: 
• Equivalent to nested set of if-else if constructs but produces less logic since it does 

not force priority order. 

• It identifies mutually exclusive blocks of code.  

• Since all possible values of select inputs must be covered, use the default clause. 

• case statements have to be inside a module.  It can be used to describe multiplexors. 

• casez statements treat ‘Z’ as don’t cares, where a match is asserted when the rest of 

the word matches. 

• casex statements treat both ‘X’ and ‘Z’ as don’t cares. 

 

Example: ‘case’ Statement 

 

module case_example(input a, b, sel,  

                                     output c); 

 

always_comb 

begin: case_process 

       

    case (sel) 

        1'b0 :  c = a; 

        1'b1 : c = b; 

        default : c = 1'b0; 

    endcase 

end 

endmodule 

Example: ‘casez’ Statement 

 

module case_example(input a, b, sel,  

                                     output c); 

 

always_comb 

begin: case_process 

 

    casez (sel) 

        1'z0 :  c = a;     

        1'zx :  c = b; 

        default : c = 1'b0; 

    endcase 

end 

endmodule 
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Note:  The ‘case’ example to the left employs precise matching, that is, ‘sel’ has to be 

strictly either the value ‘1'b0’ or ‘1'b0’ in order for ‘c’ to receive ‘a’ or ‘b’.  As for 

the ‘casez’ example to the right, both case items will ignore their own <radix> when 

comparing against ‘sel’, since ‘Z’ is treated as don’t cares here.  But they still need 

to match their <value>.  For example, a ‘sel’ of ‘1'h0’ will only match the first case 

item, and a ‘1'hF’ will only match the second case item. 

 

• Although case statement and if-else if statements are logically similar, 

SystemVerilog will actually interpret them into different physical circuits, as 

shown below 

 

 

Example: 4-to-1 Multiplexer 

 

 

 

 
 

 
 
 

Design 1: 

 

module mux (input [3:0] Din,  

                       input [1:0] sel, 

                       output Dout); 

  

 always_comb 

 begin 

 if (sel == 1'b00) 

        Dout = Din[0]; 

else if (sel == 1'b01) 

     Dout = Din[1]; 

else if (sel == 1'b10)  

       Dout = Din[2]; 

else  

       Dout = Din[3]; 

 end 

endmodule 

 

 

RTL Synthesis: 

procedural block 

module  mux Din 

sel 

Dout 

4 

2 
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Design 2: (Produces less logic) 

 

module mux (input [3:0] Din,  

                       input [1:0] sel, 

                       output Dout); 

  

 always_comb 

 begin 

  case (sel) 

      2'b00   : Dout = Din[0]; 

     2'b01   : Dout = Din[1]; 

     2'b10   : Dout = Din[2]; 

           default : Dout = Din[3]; 

     endcase 

 end 

endmodule 

 

RTL Synthesis: 

 
 

• Notice how the case statement gives a cleaner circuit with less logic.  In general, 

although there are many different syntactic approaches to achieve the same logical 

functionality, most often one will be better than the other due to the translation of 

the circuit.  Therefore it is somewhat important to try to write SystemVerilog in a 

nice, organized way. 
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Creating Hierarchical Design Using Components: 
As mentioned earlier, you can create larger designs using modules as the components that 

make up the design. One module can instantiate other modules as components of it. One 

module can use different modules as components as well as instantiate multiple copies of 

the same module. 

 

Example: Creating a 4-bit adder using a full-adder component 

 

Design Entity Full-Adder 

 

module full_adder  (input x, y, z, 

                                  output s, c); 

 

 assign s = x^y^z; 

 assign c = (x&y)|(y&z)|(x&z); 

 

endmodule 

 

Use component full_adder to create a 4-bit adder: 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Design Entity ADDER4 that uses multiple full-adder components 

 

module ADDER4 (input    [3:0]  A, B,  

                                input              c_in, 

                                output  [3:0]  S, 

                                output            c_out); 

 

 // Internal carries in the 4-bit adder 

 logic                 c0, c1, c2; 

 

/*============================================*/ 

 // Netlists with named (explicit) port connection 

x     y 

s 
c z 
FA1 

A1 B1 

c1 

S1 

x     y 

s 
c z 
FA0 

A0 B0 

c0 

  S0 

x     y 

s 
c z 
FA3 

A3 B3 

c_out 

 S3 

x     y 

s 
c z 
FA2 

A2 B2 

c2 

  S2 

c_in 

 

ADDER4 
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// Syntax: <module> <name>(.<parameter_name> (<connection_name>), …) 

 full_adder        FA0 (.x (A[0]), .y (B[0]), .z (c_in), .s (S[0]), .c (c0)); 

 full_adder        FA1 (.x (A[1]), .y (B[1]), .z (c0), .s (S[1]), .c (c1)); 

 full_adder        FA2 (.x (A[2]), .y (B[2]), .z (c1), .s (S[2]), .c (c2)); 

 full_adder        FA3 (.x (A[3]), .y (B[3]), .z (c2), .s (S[3]), .c (c_out)); 

 

endmodule 

 

RTL Synthesis: 

 
 

 

 

To simplify the port connections and coding redundancy, SystemVerilog introduces 

implicit “.name” and “.*” port connections.  This is based on the fact that most of the port 

connections share the same port names on each end of the connection.  For the “.name” 

implicit port connection, SystemVerilog automatically connects ports that share the same 

name and size with the connecting wire.  For the “.*” port connection, SystemVerilog 

automatically connects ports that share the same name and size without the need of 

rewriting them. 

 

Example: .name connection 

 

module top_level(input clock, reset, in, 

                              output out); 
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logic         tmp; 

logic [2:0] data; 

 

 

// module1 myModule1(input clock, reset, in, output result, output [2:0] data) 

module1 myModule1(.clock, .reset, .in, .result(tmp), .data(data)); 

// module2 myModule2(input clock, reset, feed, output [1:0] data, output out) 

module2 myModule2(.clock, .reset, .feed(tmp), .data(data[1:0]), .out); 

 

endmodule 

 

Note: The example above employs implicit port connection.  If the name and size of the 

connections match (‘clock’, ‘reset’, ‘in’ and ‘out’ port in this case), then the 

matching ports will be automatically connected.  However, if the name 

(‘result’/’feed’ ports) or the size (‘[2:0]data’/‘[1:0]data’ ports) of the connecting 

ports doesn’t match, we will need to write out the connection explicitly by adding a 

parenthesis behind the port name and indicate the specific wiring. 

 

 

Example: .* connection 

 

module top_level(input clock, reset, in, 

                              output out); 

 

logic          tmp; 

logic [1:0] data; 

 

// .* “Wild card” port connection.  Only need to write out the connection if the  

//   name or size doesn’t match 

module1 myModule1(.*, .result(tmp)); 

module2 myModule2(.*, .feed(tmp)); 

 

endmodule 

 

Note: In both implicit connections, an unconnected port must be explicitly named with 

blank connection.  Ex: .<port_name>() 
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More Examples: 
Example: Sequential Circuit 

 

 

 

 

 

 

 

 

 

 
 
module counter (input clk, asynch_clr, enable, up_down, 

                            output   [7:0]  Q); 

 

always_ff @ (posedge clk or posedge asynch_clr) 

/* Placing “posedge asynch_clr” in the sensitivity list enables clear whenever 

    asynch_clr is on a rising edge.  If “posedge asynch_clr” is not in the sensitivity 

    list, then the circuit will only be cleared if asynch_clr is high during a rising edge 

    of the clk, i.e., the circuit will be synchronously cleared */ 

 

begin 

if (asynch_clr) 

       Q <= 8'b0; 

else if (enable) 

   if (up_down) 

          Q <= Q + 1'b1; 

    else 

       Q <= Q - 1'b1; 

end 

 

endmodule 

 

RTL Synthesis: 

 

 

 

 

 

 

 

 

 

 
8-bit Up-Down Counter 

enable 

clk 

Q(7)Q(6) . . . . . Q(1)Q(0) 

 up_down 

asynch_clr 
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Example: N-Bit Left Shift Register 

 

 

 

 

 

 

 

 

 

 

 

 
 

// #(N=4) is a variable parameter 

module shiftReg #( N = 4) (input                 Clk, Shift_En, Shift_In, Load, 

                                             input  [N-1:0]   Din, 

                                             output [N-1:0]  Dout, 

                                             output               Shift_Out); 

 

always_ff @ (posedge Clk) 

begin 

if (Load)  

       Dout <= Din; 

else if (Shift_En) 

       Dout <= { Dout[N-2:0], Shift_In };     // Concatenation 

end 

  

assign Shift_Out = Dout[N-1]; 

 

endmodule                           // shiftReg  

 

RTL Synthesis: 

 

4-Bit Register 
“reg_4” 

Din 

Shift_In 

Load 

Shift_En 

Clk 

Shift_Out 

Data_Out 

4 

4 
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State Machine Design: 
Example: Control Unit                      

 
 
 
 
 
 

 
module control (input  Clk, Reset, Execute, LoadA, LoadB,  

                           output Shift_En, Ld_A, Ld_B); 

 

 enum logic [2:0] {A, B, C, D, E, F}   curr_state, next_state;   // Internal state logic 

 

// Assign 'next_state' based on 'state' and 'Execute' 

always_ff @ (posedge Clk or posedge Reset )  // Sequential logic 

begin 

  if (Reset) 

     curr_state <= A;   // alternatively use the enum method  

  else                        //    <enum_name>.first to point to the first enum value 

     curr_state <= next_state; 

 end 

 

// Assign outputs based on ‘state’ 

always_comb 

begin 

  // Default to be self-looping (stay in current state unless triggered), so 

                        //  therefore no potential latch will be inferred 

  next_state  = curr_state;          

 

 // The keyword “unique” asserts that there are no overlapping cases.  It will 

 //    generate warnings when multiple case item expressions are true at the  

            //    same time 

unique case (curr_state)  

     // use <enum_name> = <enum_value>  to assign the next state, or  

                           //     use <enum_name>.next to go to the immediate next state 

    A :     if (Execute)                   // conditional state transition 

    next_state = B;  

    B :        next_state = C;        // deterministic state transition 

     C :        next_state = D; 

    D :        next_state = E; 

    E :         next_state = F; 

Control 
Reset 

LoadA 

LoadB 

Execute 

Clk 

Shift_En 

Ld_A 

Ld_B 
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    F :      if (~Execute)  

    next_state = A; 

  endcase 

 end 

 

// Assign outputs based on ‘state’ 

always_comb 

begin 

case (curr_state)  

        A:  

       begin 

             Ld_A = LoadA; 

              Ld_B = LoadB; 

              Shift_En = 1'b0; 

        end 

     F:  

        begin 

             Ld_A = 1'b0; 

              Ld_B = 1'b0; 

              Shift_En = 1'b0; 

        end 

     default: 

        begin 

              Ld_A = 1'b0; 

              Ld_B = 1'b0; 

              Shift_En = 1'b1; 

        end 

     endcase 

 end 

 

endmodule 

 

RTL Synthesis: 

 
 

Verification: 
After designing and implementing your circuit in SystemVerilog, the next step is to make 

sure that it works according to the design requirement free from bugs through the 

verification process.  A simulation instantiates the top level module of your circuit and 
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does the following things: 

• Generates the input vector waveform 

• Apply the input waveform to the DUT (your circuit) 

• Outputs the response 

 

Once the circuit response is obtained, you can then verify it to see if it complies with the 

design requirement.  If any response does not comply properly, you should trace back the 

specific faulty response all the way back to where the design flaw is generated and try to fix 

it.  You should always verify your circuit as complete as possible to avoid unexpected 

flaws. 

 

There are two ways to verify your circuit.  The first one is using the SystemVerilog 

testbench module.  SystemVerilog is a very powerful verification language, with 

constructs borrowed from the software languages.  The compiler will generate the input 

signals according to the constructed testbench module, and the simulated result will be 

outputted.  The testbench approach is especially useful when dealing with large and 

complicated circuits, which usually requires the generation of numerous inputs and the 

verification of numerous outputs. 

 

If your circuit is simple and straightforward, then using the GUI waveform generator 

approach might be more convenient.  Many HDL compilers come with built-in or 

custom-made GUI waveform generators which allow the designers to directly generate the 

input signals and view the output signals graphically.  The Quartus II compiler we will be 

using employs such a custom-made GUI waveform generator.  Please refer to IQT 

document for a tutorial on the ModelSim-Altera GUI verification, and on using testbenches 

in ModelSim-Altera. 

  

Other Notes/Hints: 

• A design that simulates is not guaranteed to synthesize. Simulation tools allow 

simulating designs that may not be physically possible to implement. 

• It is always a good idea to assign values to outputs in all possible cases for any 

diverging statement. This way we can avoid inferred latches. If we do not specify the 

value of a signal for some input combination, then the design will have inferred 

latch(es) because it will try to hold the old value of the signal. 

• Keep in mind that HDL statements are usually executed concurrently and not 

sequentially. 

▪ When a value is assigned to a signal, it does not take effect until the next simulation 

cycle, unless you specify it to be updated immediately, i.e., through the blocking 

statement. 

• Include all inputs that can change the outputs in the sensitivity list of a procedure to 

avoid different circuit behavior from simulation and synthesis. 

▪ You can manipulate when the procedure executes by including/excluding certain 

inputs from the sensitivity list, but that will only work for the simulation model. If 

the synthesized design is combinational, then the logic will respond to events on 

any inputs, not just the inputs in the sensitivity list.  
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• SystemVerilog allows delay/wait statements, but that is only guaranteed during 

simulation. The synthesized design may not have similar delays. 

▪ For example: #5 x <= y;  // delay x <= y by 5 time units. 

➢ This is allowed, but synthesis behavior is not guaranteed. 

• SystemVerilog compilers generally allow looping statements (for, while, do…while, 

…), but synthesis tools will only be able to synthesize it if the statement can be unrolled 

and determined during the synthesis, i.e., the looping statements are to save repetitive 

statements and are not intended to execute non-determined cyclings. 

• Do not specify initial values in variable declarations. Synthesis compilers cannot 

synthesize the initial procedural block. Initial values can be assigned explicitly under a 

controlling signal (e.g. reset). 

• Assign don’t care values to signals when possible for default cases. It may allow the 

synthesis compiler to produce a better design. 

• Case statements produce less logic than if-else statements since if-else statements 

produce priority logic also. 

• Do not assign value to the same signal via multiple statements that can execute 

simultaneously.  The compiler will either handle only the last assignment or produce an 

error. 

• Write your code for synthesis rather than just simulation, as you will need to synthesize 

your designs for all experiments involving SystemVerilog. 

 

References:  

 

 [1] “SystemVerilog 3.1a Language Reference Manual, Accellera's Extensions to Verilog”, 

Accellera, 2004.  Available at: http://www.eda.org/sv/ 

 

 [2] S. Sutherland, S. Davidmann and P. Flake, SystemVerilog for Design: A Guide to 

Using SystemVerilog for Hardware Design and Modeling, 2nd ed. Springer, 2006. 

 

 [3] Yalamanchili, Sudhakar. Introductory VHDL – From Simulation to Synthesis. New 

Jersey: Prentice-Hall, 2001. 

 

 [4] “A Proposal for a Standard Synthesizable Subset for SystemVerilog-2005: What the 

IEEE failed to Define”, by Stuart Sutherland. presented at DVCon, March 2006. 

Available at 

http://www.sutherland-hdl.com/papers/2006-DVCon_SystemVerilog_synthesis_subs

et_paper.pdf 

 

 

 

 

 

 

 

 

 

http://www.eda.org/sv/
http://www.sutherland-hdl.com/papers/2006-DVCon_SystemVerilog_synthesis_subset_paper.pdf
http://www.sutherland-hdl.com/papers/2006-DVCon_SystemVerilog_synthesis_subset_paper.pdf

