
Comprehensive Verilog
Training Workbook

May 2001

Reprinted under license and by permission of Doulos Ltd.. Copyright  DOULOS. 2001. All rights reserved. This
document contains information that is proprietary to DOULOS. and may not be duplicated in whole or in part in any
form without written consent from DOULOS. In accepting this document, the recipient agrees to make every

reasonable effort to prevent the unauthorized use of this information.

This document is for information and instruction purposes. DOULOS reserves the right to make changes in
specifications and other information contained in this publication without prior notice, and the reader should, in all
cases, consult DOULOS to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of DOULOS products are set forth in written
agreements between DOULOS and its customers. No representation or other affirmation of fact contained in this
publication shall be deemed to be a warranty or give rise to any liability of DOULOS whatsoever.

DOULOS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

DOULOS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF DOULOS LTD HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely at private
expense and are commercial computer software provided with restricted rights. Use, duplication or disclosure by
the U.S. Government or a U.S. Government subcontractor is subject to the restrictions set forth in the license
agreement provided with the software pursuant to DFARS 227.7202-3(a) or as set forth in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
DOULOS Ltd.
Church Hatch
22 Market Place
Ringwood

Hampshire BH24 1AW
UK

A complete list of trademark names appears in a separate “Trademark Information” document.

This is an unpublished work of DOULOS Ltd.

TM-iii

Trademark Information
Mentor Graphics Trademarks

The following names are trademarks, registered trademarks, and service marks of Mentor Graphics Corporation:
3D Design, A World of Learning(SM), ABIST, Arithmetic BIST, AccuPARTner,AccuParts, AccuSim, ADEPT, ADVanceMS, ADVance RFIC,
AMPLE, Analog Analyst, Analog Station, AppNotes(SM), ARTgrid, ArtRouter, ARTshape, ASICPlan, ASICVector Interfaces, Aspire
Assess2000(SM), AutoActive, AutoCells, AutoDissolve, AutoFilter, AutoFlow, AutoLib, AutoLinear, AutoLink, AutoLogic, AutoLogic
BLOCKS, AutoLogic FPGA, AutoLogic VHDL, AutomotiveLib, AutoPAR, AutoTherm, AutoTherm Duo, AutoThermMCM, Autowire Station,
AXEL, AXEL Symbol Genie, Bist Architect, BIST Compiler(SM), BIST-In-Place(SM), BIST-Ready(SM), Block Station, Board Architect, Board
Designer, Board Layout, Board Link, Board Process Library, Board Station, Board Station Consumer, BOLD Administrator, BOLD Browser, BOLD
Composer, BSDArchitect, BSPBuilder, Buy on Demand, Cable Analyzer, Cable Station, CAECO Designer, CAEFORM, Calibre, Calibre DRC,
Calibre DRC-H, Calibre LVS, Calibre LVS-H, Calibre OPCpro, Calibre ORC, Calibre PRINTimage, Calibre PSMgate, Calibre WORKbench, Calibre
RVE, Calibre MGC, CAM Station, Capture Station, CAPITAL H, CAPITAL H the complete desktop engineer, Cell Builder, Cell Station,
CellFloor, CellGraph, CellPlace, CellPower, CellRoute, Centricity, CEOC, CheckMate, CheckPlot, CHEOS, Chip Station, ChipGraph,
ChipLister, Circuit PathFinder, Co-Verification Environment, Co-Lsim, CodeVision, CommLib, Concurrent Board Process(SM), Concurrent Design
Environment, Connectivity Dataport, Continuum, Continuum Power Analyst, CoreAlliance, CoreBIST, Core Builder, Core Factory, CTIntegrator,
DataCentric Model, Datapath, Data Solvent, dBUG, DC Analyzer, Design Architect, Design Architect Elite, Design Capture, Design Only, Design
Manager, Design Station, DesignView, DesignWide, DesktopASIC, Destination PCB, DFTAdvisor, DFTArchitect, DFTCompiler, DFTInsight,
DirectConnect(SM), Documentation Station, DSS (Decision Support System), Eldo, ePartners, EParts, E3LCable, EDGE (Engineering Design Guide for
Excellence)(SM), Empowering Solutions, Engineer’s Desktop, EngineerView, ENRead, ENWrite, ESim, Exemplar Logic, Expedition,
Expert2000(SM), Explorer CAECO Layout, Explorer CheckMate, Explorer Datapath, Explorer Lsim, Explorer Lsim-C, Explorer Lsim-S, Explorer
Ltime, Explorer Schematic, Explorer VHDLsim, ExpressI/O, FabLink, Falcon, Falcon Framework, FastScan, FastStart, FastTrack Consulting(SM),
First-Pass Design Success, First-pass success(SM), FlexSim, FlexTest, FDL (Flow Definition Language), FlowTabs, FlowXpert, FORMA, FormalPro,
FPGA Advantage, FPGAdvisor, FPGA BoardLink, FPGA Builder, FPGASim, FPGA Station, FrameConnect, Galileo, Gate Station, GateGraph,
GatePlace, GateRoute, GDT, GDT Core, GDT Designer, GDT Developer, GENIE, GenWare, Geom Genie, HDL2Graphics, HDL Architect,
HDL Architect Station, HDL Author, HDL Designer, HDL Designer Series, HDL Detective, HDL Inventor, HDL Pilot, HDL Processor, HDL Sim,
Hardware Modeling Library, HIC rules, Hierarchy Injection, HotPlot, Hybrid Designer, Hybrid Station, IC Design Station, IC Designer, IC Layout
Station, IC Station, ICbasic, ICblocks, ICcheck, ICcompact, ICdevice, ICextract, ICGen, ICgraph, ICLink, IClister, ICplan, ICRT Controller
Lcompiler, ICrules, ICtrace, ICverify, ICview, ICX, ICX Custom Model, ICX Custom Modeling, ICX Project Modeling, ICX Standard Library,
IDEA Series, Idea Station, INFORM, IFX, Inexia, Integrated Product Development, Integration Tool Kit, INTELLITEST, Interactive Layout,
IntraStep(SM), Inventra, Inventra Soft Cores, IP Engine , IP Evaluation Kit, IP Factory, IP -PCB, IP QuickUse, IPSim, IS_Analyzer,
IS_Floorplanner, IS_MultiBoard, IS_Optimizer, IS_Synthesizer, ISD Creation(SM), ITK, It's More than Just Tools(SM), Knowledge Center(SM),
Knowledge-Sourcing(SM), LAYOUT, LNL, LBIST, LBIST Architect, Lc, Lcore, Leaf Cell Toolkit, Led, LED LAYOUT, Leonardo,
LeonardoInsight, LeonardoSpectrum, LIBRARIAN, Library Builder, Logic Analyzer on a Chip(SM), Logic Builder, Logical Cable, LogicLib, logio,
Lsim, Lsim DSM, Lsim-Gate, Lsim Net, Lsim Power Analyst, Lsim-Review, Lsim-Switch, Lsim-XL, Mach PA, Mach TA, Manufacture View,
Manufacturing Advisor, Manufacturing Cable, MaskCompose, MaskPE, MBIST, MBISTArchitect, MCM Designer, MCM Station, MDV,
MegaFunction, Memory Builder, Memory Builder Conductor, Memory Builder Mozart, Memory Designer, Memory Model Builder, Mentor, Mentor
Graphics, Mentor Graphics Support CD(SM), Mentor Graphics SupportBulletin(SM), Mentor Graphics SupportCenter(SM), Mentor Graphics SupportFax(SM),
Mentor Graphics SupportNet-Email(SM), Mentor Graphics SupportNet-FTP(SM), Mentor Graphics SupportNet-Telnet(SM), MicroPlan, MicroRoute, Microtec,
Mixed-Signal Pro, ModelEditor, ModelSim, ModelSim LNL, ModelSim VHDL, ModelSim VLOG, ModelSim SE, ModelStation, Model Technology,
ModelViewer, ModelViewerPlus, MODGEN, Monet, Mslab, Msview, MS Analyzer, MS Architect, MS-Express, MSIMON, MTPI(SM),
Nanokernel, NetCheck, NETED, OpenDoor(SM), Opsim, OutNet, P&RIntegrator, PACKAGE, PARADE, ParallelRoute-Autocells, ParallelRoute-
MicroRoute, PathLink, Parts SpeciaList, PCB-Gen, PCB-Generator, PCB IGES, PCB Mechanical Interface, PDLSim, Personal Learning Program,
Physical Cable, Physical Test Manager:SITE, PLA Lcompiler, PLDSynthesis, PLDSynthesis II, Power Analyst, PowerAnalyst Station, Pre-Silicon,
ProjectXpert, ProtoBoard, ProtoView, QNet, QualityIBIS, QuickCheck, QuickFault, QuickGrade, QuickHDL, QuickHDL Express, QuickHDL
Pro, QuickPart Builder, QuickPart Tables, QuickParts, QuickPath, QuickSimII, QuickStart, QuickUse, QuickVHDL, RAM Lcompiler, RC-
Delay, RC-Reduction, RapidExpert, REAL Time Solutions!, Registrar, Reinstatement 2000(SM), Reliability Advisor, Reliability Manager, REMEDI,
Renoir, RF Architect, RF Gateway, RISE, ROM Lcompiler, RTL X-Press, Satellite PCB Station, ScalableModels, Scaleable Verification, SCAP,
Scan-Sequential, Scepter, Scepter DFF, Schematic View Compiler, SVC, Schemgen, SDF (Software Data Formatter), SDL2000 Lcompiler, Seamless,
Seamless Co-Designer, Seamless CVE, Seamless Express, Selective Promotion, SignaMask OPC, Signal Vision, Signature Synthesis, Simulation
Manager, SimExpress, SimPilot, SimView, SiteLine2000(SM), SmartMask, SmartParts, SmartRouter, SmartScripts, Smartshape, SNX, SneakPath
Analyzer, SOS Initiative, Source Explorer, Spectra, SpiceNet, SST Velocity, Standard Power Model Format (SPMF), Structure Recovery, Super C,
Super IC Station, Support Services BaseLine(SM), Support Services ClassLine(SM), Support Services Latitudes(SM), Support Services OpenLine(SM), Support
Services PrivateLine(SM), Support Services SiteLine(SM), Support Services TechLine(SM), Support Services RemoteLine(SM), Symbol Genie, Symbolscript,
SYMED, SynthesisWizard, System Architect, System Design Station, System Modeling Blocks, Systems on Board Initiative, Target Manager, Tau,
TeraCell, TeraPlace, TeraPlace-GF, TechNotes, Test Station, Test Structure Builder, The Ultimate Site For HDL Simulation, TimeCloser, Timing
Builder, TNX, ToolBuilder, TrueTiming, Vlog, V-Express, V-Net, VHDLnet, VHDLwrite, Verinex, ViewCreator, ViewWare, Virtual
Library, Virtual Target, Virtual Test Manager:TOP, VR-Process(SM), VRTX, VRTXmc, VRTXoc, VRTXsa, VRTX32, Waveform DataPort, We
Make TMN Easy, WorkXpert, xCalibre, xCalibrate, Xconfig, XlibCreator, Xpert, Xpert API, XpertBuilder, Xpert Dialogs, Xpert Profiler,
XRAY, XRAY MasterWorks, XSH, Xtrace, Xtrace Daemon, Xtrace Protocol, Zeelan, Zero Tolerance Verification, Zlibs

TM-iv

Third-Party Trademarks
The following names are trademarks, registered trademarks, and service marks of other companies that appear in Mentor
Graphics product publications:

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange, and PostScript are registered trademarks of Adobe Systems Incorporated.

Allegro, Composer, Concept, GED, Veritime, Dracula, GDSII, Verilog, Verilog XL, NC-Verilog, Silicon Ensemble, Analog Artist, OCEAN, Virtuoso, and
Leapfrog are trademarks and registered trademarks of Cadence Design Systems, Inc.

Altera is a registered trademark of Altera Corp.

AM188, AMD, AMD-K6, and AMD Athlon Processor are trademarks of Advanced Micro Devices, Inc.

Apple and Laserwriter are registered trademarks of Apple Computer, Inc.

ARIES is a registered trademark of Aries Technology.

ARM is a trademark of Advanced RISC Machines Limited.

ASAP, Aspire, C-FAS, CMPI, Eldo-FAS, EldoHDL, Eldo-Opt, Eldo-UDM, EldoVHDL, Eldo-XL, Elga, Elib, Elib-Plus, ESim, Fidel, Fideldo, GENIE,
GENLIB, HDL-A, MDT, MGS-MEMT, MixVHDL, Model Generator Series (MGS), Opsim, SimLink, SimPilot, SpecEditor, Success, SystemEldo, VHDeLDO
and Xelga are registered trademarks of ANACAD Electrical Engineering Software, a unit of Mentor Graphics Corporation.

AVR is a registered trademark of Atmel Corporation.

CAE+Plus and ArchGen are registered trademarks of CAE Plus, Inc.

CalComp is a registered trademark of CalComp, Inc.

Canon is a registered trademark of Canon, Inc. BJ-130, BJ-130e, BJ-330, and Bubble Jet are trademarks of Canon, Inc.

Centronics is a registered trademark of Centronics Data Computer Corporation.

ColdFire and M-Core are registered trademarks of Motorola, Inc.

Design Planner, HLD Systems, Logic DP, Physical DP, and Pillar are trademarks or registered trademarks of High Level Design Systems.

Ethernet is a registered trademark of Xerox Corporation.

Foresight and Foresight Co-Designer are trademarks of Nu Thena Systems, Inc.

FrameMaker, Frame Technology, and Frame are registered trademarks of Frame Technology Corporation. FrameWriter, FrameViewer, FrameMath, and the
Frame logo are trademarks of Frame Technology Corporation.

FLEXlm is a trademark of Globetrotter Software, Inc.

GenCAD is a trademark of Mitron Corporation.

Hewlett-Packard (HP), LaserJet, MDS, HP-UX, PA-RISC, APOLLO, DOMAIN and HPare registered trademarks of Hewlett-Packard Company.

HCL-eXceed and HCL-eXceed/W are registered trademark of Hummingbird Communications. Ltd.

HSPICE is a registered trademark of Meta-Software, Inc.

Installshield is a registered trademark and servicemark of InstallShield Corporation.

IBM, PowerPC, and RISC Systems/6000 are trademarks of International Business Machines Corporation.

I-DEAS Harness Design is a registered trademark of Meta-Software, Inc.

IKON is a trademark of IKON Corporation.

IKOS and Voyager are registered trademarks of IKOS Systems, Inc.

Imagen, QMS, QMS-PS 820, Innovator, and Real Time Rasterization are registered trademarks of QMS Corporation. imPRESS and UltraScript are trademarks
of QMS Corporation.

Infineon and C165 are trademarks of Infineon Technologies AG.

Intel, i960, i386, and i486 are registered trademarks of Intel Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

LM-family and SmartModel are registered trademarks of Logic Modeling Corporation. Speed-Model and Speed Modeling are trademarks of Logic Modeling
Corporation.

MACH, XP, and Zycad are trademarks of Zycad Corporation.

MemoryModeler MemMaker are trademarks of Denali Software, Inc.

MIPS is a trademark of MIPS Technologies, Inc.

Motif and OSF/Motif are trademarks of Open Software Foundation, Inc.

MS-DOS and Windows are trademarks of Microsoft Corporation.

MULTI is a registered trademark of Green Hills Software, Inc.

NEC and NEC EWS4800 are trademarks of NEC Corp.

Netscape is a trademark of Netscape Communications Corporation.

OakDSPCore is a registered trademark for DSP Group, Inc.

OSF/Motif is a trademark of the Open Software Foundation, Inc.

PKZIP is a registered trademark fo PKWARE, Inc.

PADS-Perform is a registered trademark of PADS Software, Inc.

Quantic is a registered trademark of Quantic Laboratories, Inc.

QUASAR is a trademark of ASM Lithography Holding N.V.

Red Hat is a registered trademark of Red Hat Software, Inc.

TM-v

SCO, the SCO logo and The Santa Cruz Operation are trademarks or registerred trademarks of the Santa Cruz Operations, Inc. in the USA and other countries.

Signalscan is a trademark of Design Acceleration, Inc.

SimWave product is a registered trademark of Systems Science, Inc.

SPARC is a registered trademark, and SPARCstation is a trademark, of SPARC International, Inc.

Sun Microsystems, Sun Workstation, and NeWS are registered trademarks of Sun Microsystems, Inc. Sun, Sun-2, Sun-3, Sun-4, OpenWindows, SunOS,
SunView, NFS, and NSE are trademarks of Sun Microsystems, Inc.

SuperH is a trademark of Hitachi, Ltd.

Synopsys, Design Compiler, Library Compiler, and Chronologic VCS are trademarks registered trademark of Synopsys, Inc.

Teamwork is a registered trademark of Cadre Technologies, Inc.

Times and Helvetica are registered trademarks of Linotype AG.

TimingDesigner, QuickBench, and Chronology, are registered trademarks of Chronology Corp.

Transmission Line Calculator (TLC), Crosstalk Toolkit (XTK), Crosstalk Field Solver (XFX), Pre-Route Delay Quantifier (PDQ), and Mentor Graphics Board
Station Translator (MBX) are trademarks of Quad Design.

Tri-State, Tri-State Logic, tri-state, and tri-state logic are registered trademarks of National Semiconductor Corporation.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

Versatec is a trademark of Xerox Engineering Systems, Inc.

ViewDraw, Powerview, Motive, and Viewlogic are registered trademarks of Viewlogic Systems, Inc.

Visula is a registered trademark of Zuken-Redac.

VxSim, VxWorks and Wind River Systems are trademarks or registered trademarks of Wind River Systems, Inc.

Z80 is a registered trademark of Zilog, Inc.

XVision is a registered trademark of Visionware Limited, a subsidiary of the Santa Cruz Operation, Inc.

X Window System is a trademark of MIT (Massachusetts Institute of Technology).

Other brand or product names that appear in Mentor Graphics product publications are trademarks or registered
trademarks of their respective holders. Updated 01/15/01.

TM-vi

TABLE OF CONTENTS

Table of Contents

Comprehensive Verilog V 6.0 vii
May 2001

Module 1

Introduction to Verilog ...1-1

Introduction to Verilog ...1-2
What is Verilog? ...1-3
A Brief History of Verilog ..1-5
Scope of Verilog ...1-7
Levels of Abstraction ..1-9
Design Flow ..1-11
Synthesis Inputs and Outputs ..1-12
Synchronous Design ...1-14
Timing Constraints ...1-16
Synthesis Caveats ...1-18
Benefits ...1-20
Tool and Technology Independence ...1-22
Verilog Books ...1-24
Internet Resources ..1-26

Module 2

Modules ..2-1

Modules ..2-2
Modules and Ports ..2-3
Continuous Assignment ..2-5
Rules and Regulations ..2-7
Single-line vs. Block Comments ..2-9
Names ...2-10
Wires ...2-12
Wire Assignments ...2-13
Net Types ..2-15
Hierarchy ..2-17
Named Mapping ...2-19

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0viii
May 2001

Primitives ..2-20
Unconnected Ports ..2-22
Quiz 1 ..2-23
Quiz 2 ..2-24
Quiz 1 - Solutions ...2-25
Quiz 2 - Solutions ...2-26
Vector Ports ..2-27
Verilog Logic Values ..2-29
Part Selects ..2-31
Test Fixtures ...2-33
Outline of Test Fixture for MUX4 ..2-34
Initial Blocks ...2-35
Registers ...2-37
$monitor ..2-39
The Complete Test Fixture ...2-41

Module 3

Numbers, Wires, and Regs ...3-1

Numbers, Wires, and Regs ...3-2
Numbers ..3-3
Truncation and Extension ...3-4
“Disguised” Binary Numbers ...3-6
More than 32 bits ..3-7
Formatted Output ..3-8
Formatting ...3-10
Formatting Text ..3-11
‘timescale ..3-13
Multiple Timescales ..3-15
$timeformat ...3-17
Always ..3-19
$stop and $finish ...3-21
Using Registers ...3-23

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0 ix
May 2001

Using Nets ..3-24
Module Boundaries ...3-25
Inout Ports ...3-26
Wire vs. Reg - Summary ..3-27

Module 4

Always Blocks ..4-1

Always Blocks ..4-2
RTL Always Statements ...4-3
If Statements ...4-5
Begin-End ...4-7
Else If ..4-8
Nested If and Begin-End ..4-9
Incomplete Assignment ..4-10
FPGAs and Transparent Latches ..4-12
Unknown and Don’t Care ...4-13
Conditional Operator ..4-15
Unknown Condition ..4-17
Tristates ...4-19

Module 5

Procedural Statements ..5-1

Procedural Statements ..5-2
Case Statement ..5-3
Casez Pattern Matching ..5-6
Casex Pattern Matching ..5-8
Casez and Casex Truth Tables ..5-9
Priority Encoder Using Case ..5-11
Full and Parallel Case Statements ...5-12
Priority Encoder Using Casez ...5-14

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0x
May 2001

One-Hot Decoder Using Casez ...5-15
One-Hot Decoder Using Case ..5-18
Is full_case Necessary? ...5-19
For Loops ..5-20
For Loop Variable Declaration ...5-22
Integers ...5-24
Other Loop Statements ...5-25
Disable ..5-27
Named Blocks ...5-29
Combinational Always ...5-31

Module 6

Clocks and Flip-Flops ...6-1

Clocks and Flip-Flops ...6-2
Latched Always ..6-3
Edge Triggered Flip-Flop ...6-4
Avoiding Simulation Races ..6-5
Non-Blocking Assignments ..6-7
Asynchronous Set or Reset ...6-8
Synchronous vs. Asynchronous Actions ..6-9
Technology Specific Features ...6-10
Synthesis Templates ...6-12
RTL Synthesis Tool Architecture ...6-13
RTL Synthesis ..6-15
Inferring Flip-Flops ..6-17
Flip-Flop Inference - Blocking Assignment ...6-18
Flip-Flop Inference - Non-Blocking ...6-19
Flip-Flop Inference - Blocking Assignment ...6-20
Flip-Flops Quiz 1 ..6-22
Flip-Flops Quiz 1 - Solution ...6-23
Flip-Flops Quiz 2 ..6-24
Flip-Flops Quiz 2 - Solution ...6-25

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0 xi
May 2001

Flip-Flop Merging ..6-26
No Flip-Flop Optimization ...6-27
Optimized By Hand ..6-28

Module 7

Operators, Parameters, Hierarchy ..7-1

Operators, Parameters, and Hierarchy ..7-2
Bitwise and Reduction Operators ...7-3
Logical Operators ...7-5
Comparison Operators ..7-7
Concatenation ...7-8
Replication ..7-9
Shift Registers ...7-11
Shift Operators ..7-12
‘define and ‘include ..7-13
‘ifdef ...7-15
Parameters ...7-17
Using Parameters ..7-18
Using Parameters in Other Modules ...7-19
Parameters in a Separate File ..7-20
Parameterized Module ..7-21
Overriding Parameters ..7-23
Defparam ..7-25
Hierarchical Names ..7-26
Upwards Name References ...7-28

Module 8

FSM Synthesis ...8-1

FSM Synthesis ..8-2
Finite State Machines ...8-3

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0xii
May 2001

State Transition Diagrams ..8-5
Explicit State Machine Description ..8-7
State Machine Architecture ..8-8
Separate Output Decoding ..8-9
Separating Registers from C-logic ..8-10
No Output Decoding ...8-12
One-Hot Using Case ...8-13
State Encoding ..8-15
Unreachable States ..8-17
Controlling Unreachable States ..8-18

Module 9

Synthesis of Arithmetic and Counters ...9-1

Synthesis of Arithmetic and Counters ..9-2
Arithmetic Operators ..9-3
Signed and Unsigned ..9-5
Synthesizing Arithmetic Operators ...9-7
Arithmetic Operators ..9-9
Using Macrocells ..9-10
Choice of Adders ..9-11
Arithmetic is not Optimized ...9-12
Arithmetic Really isn’t Optimized! ..9-14
Arithmetic WYSIWYG ..9-15
Resource Sharing ..9-16
Integers ...9-18
Vector Arithmetic ...9-19
Sign Extension ..9-21
Synthesis of Counters ...9-22
Clock Enables ...9-24
Gated Clocks ...9-26
Asynchronous Design ...9-27

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0 xiii
May 2001

Module 10

Tasks, Functions, and Memories ...10-1

Tasks, Functions, and Memories ..10-2
Tasks ...10-3
Enabling a Task ..10-5
Task Arguments ..10-7
Task Argument Passing ..10-9
Task Interaction ..10-10
Synthesis of Tasks ..10-11
Enabling RTL Tasks ...10-13
Functions ...10-15
Memories ..10-17
Memories vs. Regs ..10-18
RAMs ..10-19
Instantiating Memories ...10-21
Loading Memories ..10-22

Module 11

Test Fixtures ..11-1

Test Fixtures ...11-2
Modelling the Test Environment ..11-3
System Tasks for Output ..11-4
Writing to Files ...11-5
Opening and Closing Files ..11-6
Multi-Channel Descriptor ...11-8
Reading From Files ...11-9
The Verilog PLI ..11-10
Checking Expected Results ..11-11
Force/Release ..11-13
Design Flow ..11-14

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0xiv
May 2001

Why Simulate the Gates? ..11-15
Verilog Flow for PLD Design ..11-17
Tool Flow for ASIC Design ...11-19
Verilog Libraries ...11-21
Verilog Results Comparison ...11-23
Comparison On-the-fly ...11-24
Behavioral Modeling ..11-25
Behavioral Modeling (Cont.) ..11-26

Module 12

Behavioral Verilog ...12-1

Behavioral Verilog ..12-2
Algorithmic Description ...12-3
Wait Timing Control ...12-5
Events ...12-7
Fork-Join ...12-9
Disable, Wait ..12-11
Intra-assignment Timing Controls ..12-13
Blocking Assignments ..12-14
Non-Blocking vs. Fork-Join ...12-15
Overcoming Clock Skew ..12-17
Continuous Procedural Assignment ...12-19
Unsynthesizable Verilog ...12-21

Module 13

Project Management ...13-1

Project Management ...13-2
Writing Verilog for Simulation & Synthesis ..13-3
Verilog Coding Standards ...13-5
Data that Must be Managed ..13-7

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0 xv
May 2001

Directory Organization ...13-8
Design Data Control Options ..13-9
Functional Verification ...13-11
Methodical Testing ...13-13
Gate-Level Verification ..13-15

Appendix A

The PLI ..A-1

The PLI ..A-2
The PLI - Outline ...A-3
The Verilog PLI ...A-4
Purpose of the PLI ...A-5
PLI Applications ..A-7
PLI Routines ..A-8
The VPI Routines ..A-10
The PLI Interface ...A-12
Classes of PLI Application ..A-14
PLI Interfacing - Verilog-XL & ModelSim ...A-16
veriusertfs (Verilog-XL and ModelSim) ...A-18
Running PLI Applications ...A-19
PLI Interfacing - VCS ..A-21
The VCS PLI Table ...A-23
Interfacing VPI Applications ...A-25
vlog_startup_routines ..A-26
TF/ACC PLI Application Arguments ..A-27
TF/ACC misctf Application Arguments ..A-29
The TF/ACC data Argument ...A-31
The VPI user_data Field ..A-32
TF Routines ...A-34
System Task vs. PLI Application Arguments ..A-35
System Task String Parameters ...A-36
Passing Verilog Values ..A-38

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0xvi
May 2001

Returning Values from Functions ..A-40
checktf Example ..A-41
Checking Parameters ...A-42
misctf Callbacks ...A-43
misctf example ...A-45
Value Change Detection ..A-46
Other TF Routines ...A-47
ACC Routines ..A-49
Simple ACC Example ..A-51
ACC Routine Families ...A-52
Iteration ..A-53
Replacing Delays ...A-54
Value Change Link (VCL) Routines ...A-55
VPI Example ..A-56
VPI Handles ...A-57
VPI Arguments ..A-59
C Test Fixtures ...A-61
Generating Stimulus in C ...A-63
Applying C Stimulus ...A-64
Test Fixture for C Stimulus ...A-65

Appendix B

Gate-Level Verilog ...B-1

Gate-Level Verilog ..B-2
Structural Verilog ..B-3
Primitives ...B-4
Net Types ...B-6
Strengths ..B-8
User Defined Primitives (UDPs) ...B-10
Gate and Net Delays ..B-12
Path Delays ..B-14
Specify Blocks ...B-15

TABLE OF CONTENTS (cont.)

Table of Contents

Comprehensive Verilog V 6.0 xvii
May 2001

Smart Paths ..B-17
Pulse Rejection ..B-19
A Typical Cell Library Model ...B-21

Comprehensive Verilog, V 6.0xviii
May 2001

Comprehensive Verilog, V6.0 1-1
May 2001

Module 1
Introduction to Verilog

Comprehensive Verilog, V6.01-2

Module 1: Introduction to Verilog

May 2001

Introduction to Verilog

Notes:

1-2 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Introduction to Verilog

Aim
♦ To obtain a brief introduction to the application and scope of
Verilog and to RTL synthesis

Topics Covered
♦ What is Verilog?
♦ Levels of abstraction
♦ Design flow
♦ Synthesis
♦ Verilog resources

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-3
May 2001

What is Verilog?

Notes:

Verilog is a Hardware Description Language; a textual format for describing
electronic circuits and systems. Applied to electronic circuit design, Verilog is
intended to be used for verification through simulation, for timing analysis, for
test analysis (testability analysis and fault grading), and for logic synthesis.

Verilog HDL is an IEEE standard - number 1364. The standard document is
known as the Language Reference Manual, or LRM. This is the complete,
authoritative definition of the Verilog HDL.

IEEE Std 1364 also defines the Programming Language Interface, or PLI. This is
a collection of software routines which permit a bidirectional interface between

1-3 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

What is Verilog?

♦ Verilog Hardware Description Language

(HDL) for electronic systems

♦ For simulation, synthesis, timing analysis

and test analysis of digital circuits

♦ IEEE Standard 1364, defined by the

Language Reference Manual (LRM)

♦ Extensible via Programming Language Interface (PLI)

Comprehensive Verilog, V6.01-4

Module 1: Introduction to Verilog

May 2001

Verilog and other languages (usually C). The PLI makes it possible to customize
the Verilog language and Verilog tools such as simulators.

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-5
May 2001

A Brief History of Verilog

Notes:

The history of the Verilog HDL goes back to the 1980s, when a company called
Gateway Design Automation developed a logic simulator, Verilog-XL, and with it
a hardware description language.

Cadence Design Systems acquired Gateway in 1989, and with it the rights to the
language and the simulator. In 1990, Cadence put the language (but not the
simulator) into the public domain, with the intention that it should become a
standard, non-proprietary language.

A non-profit organization, Open Verilog International (OVI) was formed to take
the Verilog language through the IEEE standardization procedure. Verilog HDL
became IEEE Std. 1364-1995 in December 1995. In 2000, OVI merged with

1-4 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

A Brief History of Verilog

♦ 1984 - Verilog-XL introduced by Gateway Design Automation
♦ 1989 - Gateway purchased by Cadence Design Systems
♦ 1990 - All rights for Verilog HDL transferred to Open Verilog
International (OVI, now Accellera)

♦ 1995 - Publication of IEEE Standard 1364
♦ 2001? - “Verilog 2000”
♦ The future - Verilog-AMS

� Analog and Mixed-Signal Extension to Verilog

Comprehensive Verilog, V6.01-6

Module 1: Introduction to Verilog

May 2001

VHDL International to form Accellera, who will have the task of coordinating
future Verilog standards.

A draft of a proposed revised standard has been created, provisionally called
Verilog 2000 (The name may change - the new standard was not ratified in 2000).
This proposes significant changes and enhancements to the Verilog language and
the PLI. Verilog 2000 is not covered in this course and it will be a while before
simulators and synthesis tools support the new standard.

Work is also proceeding on Verilog-AMS, which will provide analog and mixed-
signal extensions to Verilog.

Unless specifically stated otherwise, the terms Verilog and Verilog HDL are used
in this course to the language, and not the Verilog-XL simulator.

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-7
May 2001

Scope of Verilog

Notes:

Verilog HDL is suited to the specification, design and description of digital
electronic hardware.

System level

Verilog is not ideally suited for abstract system-level simulation, prior to the
hardware-software split. Simulation at this level is usually stochastic, and is
concerned with modeling performance, throughput, queuing, and statistical
distributions. However, Verilog provides a few system tasks and functions for
stochastic modeling, and has been used in this area with some success.

1-5 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Scope of Verilog

RTL

Gates
Synthesis

Algorithm

System analysis and partitioningSystem analysis and partitioning

H/W specH/W spec S/W specS/W spec

Analog specAnalog spec Digital specDigital spec Physical specPhysical spec

Timing analysis
Place and Route
Timing analysis
Place and Route

Back
annotation
Back

annotation

Verilog HDLVerilog HDL

Verilog-AMSVerilog-AMS

Comprehensive Verilog, V6.01-8

Module 1: Introduction to Verilog

May 2001

Digital

Verilog is suitable for use today in the digital hardware design process, from
specification through high-level functional simulation, manual design, and logic
synthesis down to gate-level simulation. Verilog tools provide an integrated
design environment in this area.

Verilog can also be used for detailed, implementation-level modelling, that
includes switch-level simulation, timing analysis, and fault simulation.

Analog

The proposed Verilog-AMS language enables mixed-signal and behavioral analog
modelling and simulation.

Design process

The diagram opposite shows a very simplified view of the electronic system
design process that incorporates Verilog. The central portion of the diagram
shows the main parts of the design process that will be impacted by Verilog.

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-9
May 2001

Levels of Abstraction

Notes:

The diagram above summarizes the high level design flow for an ASIC (i.e. gate
array, standard cell array, or FPGA). In a practical design situation, each step
shown above may be split into several smaller steps, and may uncover parts of the
design flow that iterate as errors.

As a first step, you can use Verilog to model and simulate aspects of the complete
system containing one or more ASICs. This may be a fully functional description
of the system allowing the ASIC/FPGA specification to be validated prior to
starting detailed design. Alternatively, this may be a partial description that
abstracts certain properties of the system, such as a performance model to detect
system performance bottlenecks.

1-6 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Levels of Abstraction

Timing...

No clocking or delays

Explicit clocking

Explicit delays

Behavioral
synthesis

RTL
synthesis

AlgorithmAlgorithm

RTLRTL

GatesGates

Operations are
partially ordered
Operations are
partially ordered

Operations are tied to
a specific clock cycle
Operations are tied to
a specific clock cycle

Technology specific
gate delays

Technology specific
gate delays

Comprehensive Verilog, V6.01-10

Module 1: Introduction to Verilog

May 2001

Once the overall system architecture and partitioning is stable, the detailed design
of each ASIC can commence. This starts by capturing the ASIC/FPGA design in
Verilog at the register transfer level, and capturing a set of test cases in Verilog.
These two tasks are complementary, and are sometimes performed by different
design teams in isolation to ensure that the specification is correctly interpreted.
The RTL Verilog should be synthesisable if automatic logic synthesis is to be
used. Test case generation is a major task that requires a disciplined approach and
much engineering ingenuity: the quality of the final ASIC depends on the
coverage of these test cases.

The RTL Verilog is then simulated to validate the functionality against the
specification. RTL simulation is usually one or two orders of magnitude faster
than gate level simulation, and experience has shown that this speedup is best
exploited by doing more simulation, not spending less time on simulation.

In practice it is common to spend 70-80% of the ASIC/FPGA design cycle writing
and simulating Verilog at and above the register transfer level, and 20-30% of the
time synthesizing and verifying the gates.

Although some exploratory synthesis will be done early on in the design process,
to provide accurate speed and area data to aid in the evaluation of architectural
decisions and to check the engineer's understanding of how the Verilog will be
synthesized, the main synthesis production run is deferred until functional
simulation is complete. It is pointless to invest a lot of time and effort in synthesis
until the functionality of the design is validated.

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-11
May 2001

Design Flow

Notes:

1-7 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Design Flow

System Analysis and PartitioningSystem Analysis and Partitioning

Simulate RTL VerilogSimulate RTL Verilog

Place and RoutePlace and Route

Write RTL VerilogWrite RTL Verilog Write Verilog test fixtureWrite Verilog test fixture

Synthesise to Gate LevelSynthesise to Gate Level

Insert test logic, ATPGInsert test logic, ATPG

Synthesise to Gate LevelSynthesise to Gate Level

Gate level simulationGate level simulation

ASIC
only

ASIC only?

Comprehensive Verilog, V6.01-12

Module 1: Introduction to Verilog

May 2001

Synthesis Inputs and Outputs

Notes:

Focusing now on synthesis, this diagram shows the various inputs and outputs to a
typical RTL synthesis tool.

Inputs

The inputs to a synthesis tool includes not only the Verilog source code, but also
design constraints, boundary conditions and synthesis parameters and controls.
For example, design constraints might include maximum clock period and
maximum gate count, boundary conditions might include the capacitive load on
output pins, and synthesis parameters might include the CPU time allowed for
optimization.

1-8 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Synthesis Inputs and Outputs

Reports

Synthesis

Gate-Level Netlist Test Vectors

Schematics

Design in Verilog

Design Constraints

Synthesis
Parameters

Boundary Conditions

Target
Library
Target
Library

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-13
May 2001

Outputs

The outputs from a synthesis tool include not only the synthesized design (usually
in the form of a netlist), but also synthesized schematics and reports which aid in
determining the quality of the design. Test synthesis tools will also output a set of
automatically generated manufacturing test vectors.

Comprehensive Verilog, V6.01-14

Module 1: Introduction to Verilog

May 2001

Synchronous Design

Notes:

RTL synthesis assumes synchronous design, as do many other tools in the design
flow. Many common problems that occur during and after synthesis, especially
timing problems, can be traced back to using non-synchronous design techniques
when the detailed design was conceived and captured in Verilog. Thus, an
understanding of synchronous design techniques is an essential foundation for the
successful use of RTL synthesis.

A pure synchronous design consists of storage elements - registers - that are
triggered on the edge of a single clock, and combinational logic. All storage is in
edge-triggered flip-flops with the same clock. All flip-flops (other than pipeline
registers) have resets.

1-9 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Synchronous Design

♦ All storage is in flip-flops with a single external clock
♦ No combinational feedback loops

Clock

Enables static timing analysisEnables static timing analysis

Enables formal verificationEnables formal verification

Ensures testabilityEnsures testability

Simplifies functional verificationSimplifies functional verification

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-15
May 2001

Combinational logic is defined as a digital circuit in which the current steady state
values of the outputs depend on the current steady state values of the inputs, and
on that alone. Any cycles - feedback loops - in the logic must pass through
registers.

Comprehensive Verilog, V6.01-16

Module 1: Introduction to Verilog

May 2001

Timing Constraints

Notes:

Synthesis tools transform Verilog into gates in such a way that the functionality of
the design is preserved by the transformation. However, this is only really of any
use if the timing of the design is also correct, and synthesis only preserves the
timing of synchronous designs.

Synthesis preserves the clock cycle level behavior of the design by optimizing the
combinational logic between the registers to meet the target clock period. The data
arrival time is calculated by enumerating all of the possible paths through the
logic between registers, clock arrival is determined by tracing the Clock path,
period is specified as an independent design constraint, and setup is defined in the
technology library.

1-10 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Timing Constraints

Clock

Clock

period

hold setup

arrival

delay < period - setup - arrival

delay < period - setup

delay < required

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-17
May 2001

You will need to consider the timing relationships of external signals arriving at
the primary inputs of your design to ensure that they do not violate setup and hold
times, taking into account any delays through the I/O pads and into the core of the
chip. Unfortunately this is a common pitfall; you cannot assume that your design
will work when inserted into the wider environment of your system just because
the synthesis tool says that the timing is okay!

Comprehensive Verilog, V6.01-18

Module 1: Introduction to Verilog

May 2001

Synthesis Caveats

Notes:

Synthesis is not a panacea! It is vital that everyone working on a project starts
with realistic expectations of synthesis. Here are a few pointers.

The results of synthesis are very sensitive to the style in which the Verilog code is
written. It is not sufficient that the Verilog is functionally correct; it must be
written in such a way that it directs the synthesis tool to generate good hardware,
and moreover the Verilog must be matched to the idiosyncrasies of the particular
synthesis tool being used.

With RTL synthesis, the designer must be firmly in control of the design! Most of
the design decisions are still made by the human, with the synthesis tool

1-11 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Productivity

Synthesis Caveats

♦ Synthesis is very sensitive to how the Verilog is written
� Need a style guide

♦ Good design is still the responsibility of the designer
� Junk in - junk out

♦ Synthesis is not a replacement for human expertise
� Synthesis can give good results in short timescales
� Hand-crafting is needed for very fast or dense designs

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-19
May 2001

automating the gate level implementation. With synthesis, bad designers still
produce bad designs, they just do so faster!

In many practical design situations, synthesis will produce results which equal or
excel those of the human designer. However, for designs that push the limits of
the technology in terms of speed or density, synthesis alone is often not good
enough, and manual intervention becomes necessary. Synthesis tools do not offer
a substitute for human design knowledge and expertise!

Comprehensive Verilog, V6.01-20

Module 1: Introduction to Verilog

May 2001

Benefits

Notes:

Executable specification.

It is often reported that a large number of ASIC designs meet their specifications
first time, but fail to work when plugged into a system. Verilog allows this issue to
be addressed in two ways: A Verilog specification can be executed in order to
achieve a high level of confidence in its correctness before commencing design,
and may simulate one to two orders of magnitude faster than a gate level
description. A Verilog specification for a part can form the basis for a simulation
model to verify the operation of the part in the wider system context (E.g. printed
circuit board simulation). This depends on how accurately the specification
handles aspects such as timing and initialization.

1-12 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Benefits

♦ Executable specification
� Validate spec in system context. Subcontract

♦ Functionality separated from implementation
� Simulate early and fast. Manage complexity

♦ Explore design alternatives
� Get feedback. Produce better designs

♦ Automatic synthesis and test generation
� Increase productivity. Shorten time to market

♦ Protect your investment...

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-21
May 2001

Simulate early

With the high level design methodology, the functionality of the design can be
validated before completing the detailed implementation. Early simulation
permits errors to be found earlier in the design process, where they are easier and
cheaper to fix.

Exploration

Using behavioral and RTL synthesis tools, it is possible to explore more of the
design space by trying a number of alternative implementations and picking the
best.

Automation

Automating the generation of the logic circuit and the manufacturing test vectors
can shorten the design cycle. However, the most significant contribution of the
high level design process to achieving reduced time-to-market is that a very high
percentage of Verilog designs are right-first-time, eliminating the need for costly
re-spins.

Protect your investment

Many companies are hoping to protect their investment by achieving both tool and
technology independence through the use of Verilog. See the next page.

Comprehensive Verilog, V6.01-22

Module 1: Introduction to Verilog

May 2001

Tool and Technology Independence

Notes:

Tools

Verilog descriptions of hardware design and test fixtures are usually portable
between design tools, and portable between design centers and project partners.
While the Verilog language is inherently non-deterministic (different simulators
may give different results for certain models), you shouldn't write non-
deterministic code. So you can safely invest in Verilog modeling effort and
training, knowing that you will not be tied in to a single tool vendor, but will be
free to preserve your investment across tools and platforms. Also, the design
automation tool vendors are themselves making a large investment in Verilog,
ensuring a continuing supply of state-of-the-art Verilog tools.

1-13 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Tool and Technology Independence

♦ Simulation tool independence
� Yes! (despite non-determinism)

♦ Synthesis tool independence
� No!
� Different subsets, coding styles, and optimisations
� Proposed IEEE Std 1364.1

♦ ASIC technology independence
� Yes!

♦ FPGA/CPLD technology independence
� No!
� Generic code gives poor utilisation and speed
� Need to understand the architecture of the device

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-23
May 2001

While the above is true for simulation, the use of synthesis tools is a different
story, because there is no standard subset or interpretation of Verilog for
synthesis. There is a proposed IEEE standard 1364.1 which provides a standard
Verilog subset for synthesis, but it will be a while before this is implemented.

Technology

Verilog permits technology independent design through support for top down
design and logic synthesis. To move a design to a new technology you need not
start from scratch or reverse-engineer a specification - instead you go back up the
design tree to a behavioral Verilog description, then implement that in the new
technology knowing that the correct functionality will be preserved. This
technique can be used to re-implement an FPGA as an standard cell ASIC, for
example.

The Verilog based design flow has proved itself very robust in transferring
designs between ASIC technologies, but is less successful in transfer between
FPGA or CPLD technologies. The sort of generic Verilog coding style that works
well for ASICs does not achieve good device utilization or speed when targeting
programmable logic devices. To achieve best results with programmable logic, it
is necessary to have a good understanding of the architectural features of the
target device, and build that knowledge into the Verilog design.

Comprehensive Verilog, V6.01-24

Module 1: Introduction to Verilog

May 2001

Verilog Books

Notes:

A number of books about Verilog have been written. Those listed are
recommended and are available from the publishers at the time of writing. A
complete list of books can be found on the Internet in the Verilog FAQ (see next
page).

The IEEE standard provides the official definition of the language, its syntax and
simulation semantics, in the form of a reference manual. It was derived from the
original Gateway and Cadence reference manual.

Palnitkar's book is a good introductory textbook on Verilog. It covers a wide range
of topics, including synthesis and the PLI. (SunSoft Press/Prentice Hall, 1996.
ISBN 0-13-451675-3)

1-14 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Verilog Books

♦ IEEE Standard Hardware Description Language based on the
Verilog Hardware Description Language (IEEE Std. 1364-1995)

♦ Verilog HDL, A Guide to Digital Design and Synthesis,
by Samir Palnitkar

♦ Digital Design and Synthesis with Verilog HDL,
by Eli Sternheim at al

♦ Verilog HDL Synthesis,
by J Bhasker

♦ HDL Chip Design,
by Douglas J. Smith

Module 1: Introduction to Verilog

Comprehensive Verilog, V6.0 1-25
May 2001

Digital Design and Synthesis with Verilog HDL by Eli Sternheim, Rajvir Singh,
Rajeev Madhavan and Yatin Trivedi provides a short introduction to the language,
but the main part of the book presents a number of extended examples of Verilog
models. (Automata Publishing Company, San Jose, CA 95014, USA. 1993. ISBN
0-9627488-2-X)

Bhasker's book assumes a basic knowledge of the Verilog language and (as the
title suggests) is concerned with synthesis. (Star Galaxy Publishing, 1058 Treeline
Drive, Allentown, PA 18103,USA. http://members.aol.com/SGalaxyPub. 1998.
ISBN 0-9650391-5-3)

Doug Smith's book covers both Verilog and VHDL (another IEEE standard
hardware description language). It is both comprehensive and practical, with lots
of synthesizable "cookbook" examples. It is especially helpful if you are
interested in both Verilog and VHDL. (Doone Publications, 7950, Highway 72W
#G106, Madison, Al, 35758, USA. http://www.doone.com.1996. ISBN: 0-
9651934-3-8)

Comprehensive Verilog, V6.01-26

Module 1: Introduction to Verilog

May 2001

Internet Resources

Notes:

The Internet is a useful source of information about Verilog related topics. These
websites and news groups are given as useful starting points.

1-15 • Comprehensive Verilog: Introduction to Verilog Copyright © 2001 Doulos

Internet Resources

♦ Web sites
� www.doulos.com
� www.doulos-hdl.com (USA)
� www.parmita.com/verilogfaq
� www.accellera.org
� www.eda.org
� Vendor sites

♦ News groups
� comp.lang.verilog
� comp.arch.fpga

Comprehensive Verilog, V6.0 2-1
May 2001

Module 2
Modules

Comprehensive Verilog, V6.02-2

Module 2: Modules

May 2001

Modules

Notes:

2-2 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Modules

Aim
♦ To become familiar with the basic features of the Verilog
Hardware Description Language

Topics Covered
♦ Modules
♦ Ports
♦ Continuous assignments
♦ Hierarchy
♦ Logic Values
♦ Test fixtures
♦ Initial blocks

Module 2: Modules

Comprehensive Verilog, V6.0 2-3
May 2001

Modules and Ports

Notes:

A module represents a block of hardware with well defined inputs and outputs and
a well defined function.

A module can be considered to have two parts. The port declarations represent the
external interface to the module. The rest of the module consists of an internal
description - its behavior, its structure, or a mixture of both.

Ports

Following the keyword module is the name of the module (AOI in this example),
and a list of port names. A port may correspond to a pin on an IC, an edge
connector on a board, or any logical channel of communication with a block of

2-3 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Modules and Ports

// An and-or-invert gate

module AOI (A, B, C, D, F);
input A, B, C, D;
output F;

// The function of the AOI module is described here...

endmodule

A
B

C
D

F

Comprehensive Verilog, V6.02-4

Module 2: Modules

May 2001

hardware. Each port in the list is then declared in a port declaration. Each port
declaration includes the name of one or more ports (for example: A, B,...), and
defines the direction that information is allowed to flow through the ports (input,
output or inout).

Module 2: Modules

Comprehensive Verilog, V6.0 2-5
May 2001

Continuous Assignment

Notes:

assign

This module contains a continuous assignment, which describes the function of
the module. It is called continuous because the left hand side is continuously
updated to reflect the value of the expression on the right hand side. During
simulation, the continuous assignment is executed whenever one of the four ports
A, B, C or D on the right hand side changes value.

2-4 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Continuous Assignment

&

|

~

and

or

not

// An and-or-invert gate

module AOI (A, B, C, D, F);
input A, B, C, D;
output F;

assign F = ~((A & B) | (C & D));

endmodule

A
B

C
D

F

Comprehensive Verilog, V6.02-6

Module 2: Modules

May 2001

Operator

The continuous assignment in this example uses the three operators: & | and ~
which mean bitwise and, or and not respectively. Operators and expressions will
be discussed more fully later on.

Module 2: Modules

Comprehensive Verilog, V6.0 2-7
May 2001

Rules and Regulations

Notes:

Here's a summary of the rules and regulations for the syntax we've seen so far:

Keywords in Verilog are written in lower case. User defined names can be lower
or upper case or a mixture of the two, but are case sensitive.

Every definition and statement ends with a semicolon. It is best to write one
statement per line, and indent the statements to show the structure of the code.

The characters // mark the beginning of a comment. The rest of the line is ignored.

2-5 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Rules and Regulations

// An and-or-invert gate

module AOI (A, B, C, D, F);

input A, B, C, D;

output F;

assign F = ~((A & B) | (C & D));

/*

These lines are ignored

by the compiler

*/

endmodule

Case sensitive namesCase sensitive names

; at end of definition/statement; at end of definition/statement

Lower case keywordsLower case keywords

A commentA comment

All definitions and statements go inside a moduleAll definitions and statements go inside a module

A block commentA block comment

Comprehensive Verilog, V6.02-8

Module 2: Modules

May 2001

Block comment

A block comment begins with /* and ends with */ and may span several lines.

Module 2: Modules

Comprehensive Verilog, V6.0 2-9
May 2001

Single-line vs. Block Comments

Notes:

Generally, single line comments (//) should be used in preference to block
comments (/* … */), even if several lines need to be commented. Block comments
should only be used for commenting very large numbers of lines (e.g. to comment
out an entire module). This is because block comments cannot be nested: the end
of the innermost block comment (*/) is interpreted as being the end of the
outermost comment! Single line comments within block comments are just
considered part of the (block) comment.

2-6 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Single-line vs. Block Comments

// Comment out

// a number of lines

// using single-line

// comments

// Comment out

// a number of lines

// using single-line

// comments

/* Can nest

// single-line comments

// within block comments

*/

/* Can nest

// single-line comments

// within block comments

*/

/* Can't nest

/* block comments */

*/

/* Can't nest

/* block comments */

*/

Start of commentStart of comment

End of commentEnd of comment

ERROR!!ERROR!!

Comprehensive Verilog, V6.02-10

Module 2: Modules

May 2001

Names

Notes:

Identifiers

Names of modules, ports etc. are properly called identifiers. Identifiers can be of
any length, and consist of letters, digits, underscores (_) and dollars ($). The first
character must be a letter or an underscore.

Case

The case of identifiers is significant, so two identifiers that differ only in case do
in fact name different items.

2-7 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Names

♦ Identifiers

♦ Illegal!

♦ Escaped identifiers (terminate with white space)

♦ Keywords

AB Ab aB ab // different!

G4X6_45_123

Y Y_ _Y //different!

AB Ab aB ab // different!

G4X6_45_123

Y Y_ _Y //different!

4plus4 $14plus4 $1

\4plus4 \$1 \a+b£$%^&*(\4plus4 \$1 \a+b£$%^&*(

and default event function wireand default event function wire

Module 2: Modules

Comprehensive Verilog, V6.0 2-11
May 2001

Escaped identifier

An escaped identifier begins with a backslash (\) and ends with a white space
(space, tab, or new line). They may contain any characters, except white space.
Escaped identifiers are intended for use by tools that write Verilog, but that have
different naming conventions. Examples are schematic editors and synthesis tools.

Reserved identifiers

There are a large number of reserved identifiers that cannot be declared as names.
The complete list is as follows....

and endfunction join pull0 supply0 wire

always endprimitive large pull1 supply1 wor

assign endmodule macromodule rcmos table xnor

begin endspecify medium real task xor

buf endtable module realtime tran

bufif0 endtask nand reg tranif0

bufif1 event negedge release tranif1

case for nor repeat time

casex force not mmos tri

casez forever notif0 rpmos trian

cmos fork notif1 rtran trior

deassign function nmos rtranif0 trireg

default highz0 or rtranif1 tri0

defparam highz1 output scalared tri1

disable if parameter small vectored

edge ifnone pmos specify wait

else initial posedge specparam wand

edge inout primitive strength weak0

end input pulldown strong0 weak1

endcase integer pullup strong1 while

Comprehensive Verilog, V6.02-12

Module 2: Modules

May 2001

Wires

Notes:

The module we have been looking at is simple enough for the output to be a
simple function of the inputs using a single continuous assignment. Usually,
modules are more complex than this, and internal connections are required.

To make a continuous assignment to an internal signal, the signal must first be
declared as a wire. A wire declaration looks like a port declaration, with a type
(wire), an optional vector width, and a name or list of names. (We shall be looking
at vectors later.)

Ports default to being wires, so the declaration of wire F opposite is optional. The
other declarations are required.

2-8 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Wires

A
B
C
D

F

AB

CD

O

module AOI (A, B, C, D, F);
input A, B, C, D;
output F;

wire F; // The default
wire AB, CD, O; // Necessary

assign AB = A & B;
assign CD = C & D;
assign O = AB | CD;
assign F = ~O;

endmodule

Target (LHS) of assign must be a wireTarget (LHS) of assign must be a wire

Module 2: Modules

Comprehensive Verilog, V6.0 2-13
May 2001

Wire Assignments

Notes:

Wires can be declared and continuously assigned in a single statement - a wire
assignment. This is a shortcut which saves declaring and assigning a wire
separately. There are no advantages or disadvantages between the two methods
other than the obvious difference that wire assignments reduce the size of the text.

A delay in a wire assignment is equivalent to a delay in the corresponding
continuous assignment, not a delay on the wire. Thus it could be necessary to
separate the wire declaration from the continuous assignment to put the delay onto
the wire rather than the assignment. Note that this is a subtle point that you are
unlikely to encounter in practice!

2-9 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Wire Assignments

assign AB = A & B,
CD = C & D,
O = AB | CD,
F = ~O;

assign AB = A & B,
CD = C & D,
O = AB | CD,
F = ~O;

or

wire AB = A & B,
CD = C & D,
O = AB | CD,
F = ~O;

wire AB = A & B,
CD = C & D,
O = AB | CD,
F = ~O;

or

module AOI (A, B, C, D, F);
input A, B, C, D;
output F;

/*
wire F;
wire AB, CD, O;

assign AB = A & B;
assign CD = C & D;
assign O = AB | CD;
assign F = ~O;

*/

// Equivalent...

wire AB = A & B;
wire CD = C & D;
wire O = AB | CD;
wire F = ~O;

endmodule

Comprehensive Verilog, V6.02-14

Module 2: Modules

May 2001

This slide also illustrates a feature of the Verilog syntax where there is more than
one declaration, instance or continuous assignment and the objects being declared,
instanced or assigned are the same type. In this case, you can either have several
separate statements or assignments (separated by semicolons) or you can make
several declarations or assignments (separated by commas) in a single statement.

Module 2: Modules

Comprehensive Verilog, V6.0 2-15
May 2001

Net Types

Notes:

Nets are one of the main three data types in Verilog. (The others are registers and
Parameters. We shall meet these later.) Nets represent electrical connections
between points in a circuit.

In Verilog, a wire is a type of net, but there are also seven other net types, each
modeling a different electrical phenomenon. Wire is the default net type
(undefined names used in a connection list default to being one bit wires), and in
all probability, 99% of the nets in your Verilog descriptions will be wires.
However, the remaining types of net are important for modeling certain cases.

2-10 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Net Types

♦ There are 8 types of net, one of which is wire

Ordinary net, tristate bus

Wired and
Wired or

Pulldown resistor

Pullup resistor
Capacitive charge storage

Ground
Power

wire, tri

trireg

supply0

supply1

tri0

tri1

wor, trior

wand, triandSynonymsSynonyms

wire a, b, c;wire a, b, c;

supply0 Gnd;supply0 Gnd;

wand p, q, r;wand p, q, r;

The default net typeThe default net type

Comprehensive Verilog, V6.02-16

Module 2: Modules

May 2001

wire, tri

The wire (synonymous with tri) models either a point-to-point electrical
connection, or a tristate bus with multiple drivers. In the event of a bus conflict,
the value of the wire will become 'bx.

wand, wor

The wand (synonym triand) and wor (synonym trior) behave like AND and OR
gates respectively when there exists more than one driver on the net.

tri0, tri1

The tri0 and tri1 nets behave like wires with a pulldown or pullup resistor
attached, i.e. when these nets are not being driven, the net floats to 0 or 1
respectively. In the same situation, a wire would have the value z.

trireg

The trireg net models capacitive charge storage and charge decay. When a trireg
net is not being driven, it retains its previous value. trireg nets are used in switch-
level modelling.

supply0, supply1

The supply0 and supply1 nets represent ground and power rails respectively.

Module 2: Modules

Comprehensive Verilog, V6.0 2-17
May 2001

Hierarchy

Notes:

Module Instance

Modules can reference other modules to form a hierarchy. Here we see a 2:1
multiplex or consisting of an AOI gate and two inverters. The MUX2 module
contains references to each of the lower level modules, and describes the
interconnections between them. In Verilog jargon, a reference to a lower level
module is called a module instance.

Each instance is an independent, concurrently active copy of a module. Each
module instance consists of the name of the module being instanced (e.g. AOI of
INV), an instance name (unique to that instance within the current module) and a
port connection list.

2-11 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Hierarchy

module AOI (A, B, C, D, F);

...

endmodule

module INV (A, F);
...

endmodule

module MUX2 (SEL, A, B, F);

input SEL, A, B;

output F;

INV G1 (SEL, SELB);

AOI G2 (SELB, A, SEL, B, FB);

INV G3 (FB, F);

endmodule Wires SELB and FB are implicitWires SELB and FB are implicit

Ordered mappingOrdered mapping

Instances of modulesInstances of modules

SEL SELB

FB F
G1

G2

G3

A

B

AOI

A

B

C

D

F

Comprehensive Verilog, V6.02-18

Module 2: Modules

May 2001

Note that an instance name is required. It is used to differentiate between multiple
instances of the same module, as is the case with INV.

Ordered mapping

The module port connections are given in order, the order being derived from the
first line of the module being instanced. The first item in the list is connected to
the first port on the module, and so on. This is known as ordered mapping.

Implicit Wires

Any names that are used in a port connection list but are not declared elsewhere
get declared implicitly as one bit wires. This is very important - and very error
prone!

Module 2: Modules

Comprehensive Verilog, V6.0 2-19
May 2001

Named Mapping

Notes:

Named Mapping

An alternative to listing the ports in the correct order is named mapping. Here, the
connections are made by giving the name of the module's port, preceded by a full
stop, and supplying the name of the wire or register that is to be connected to that
port in brackets. Because the ports' names are given, the order in which they
appear is no longer relevant.

Named mapping is often preferred to ordered mapping because it is easier to
understand and less error-prone.

2-12 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Named Mapping

module AOI (A, B, C, D, F);

...

endmodule

module INV (A, F);
...

endmodule

module MUX2 (SEL, A, B, F);

input SEL, A, B;

output F;

INV G1 (.A(SEL), .F(SELB));

AOI G2 (.A(SELB), .B(A), .C(SEL), .D(B), .F(FB));

INV G3 (.F(F), .A(FB));

endmodule

Named mappingNamed mapping

Order doesn’t matterOrder doesn’t matter

SEL SELB

FB F
G1

G2

G3

A

B

AOI

A

B

C

D

F

Comprehensive Verilog, V6.02-20

Module 2: Modules

May 2001

Primitives

Notes:

In the previous example we have instaned a module INV. In fact, we do not need
to write our own module for an inverter: Verilog includes a small number of built
in primitives or gates. These include models of simple logic gates, tristate buffers,
pullup and pulldown resistors, and a number of unidirectional and bidirectional
switches.

Primitives are used extensively in detailed gate-level and switch-level models: for
example, when modelling libraries and full-custom ASICs. It is sometimes
appropriate to use primitives at other times too, although continuous assignments
are usually preferred.

2-13 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Primitives

♦ Gates
� and, nand, or, nor, xor, xnor, buf, not

♦ Pulls, tristate buffers
� pullup, pulldown, bufif0, bufif1, notif0, notif1

♦ Switches
� cmos, nmos, ... tran, ...

module MUX2 (SEL, A, B, F);

input SEL, A, B;

output F;

not G1 (SELB, SEL);

AOI G2 (SELB, A, SEL, B, FB);

not (F, FB);

endmodule

module MUX2 (SEL, A, B, F);

input SEL, A, B;

output F;

not G1 (SELB, SEL);

AOI G2 (SELB, A, SEL, B, FB);

not (F, FB);

endmodule

SEL SELB

FB
AOI F

G1

G2

A

B

Instances of primitivesInstances of primitives

Instance name optionalInstance name optional

Built inBuilt in

Module 2: Modules

Comprehensive Verilog, V6.0 2-21
May 2001

Primitives are instanced in the same way as modules, except that an instance name
is not required. (You can include one if you want.) Also, named mapping cannot
be used for primitives: you have to know the ordering of the ports; to help you, the
outputs always come before the inputs.

Comprehensive Verilog, V6.02-22

Module 2: Modules

May 2001

Unconnected Ports

Notes:

If you are using ordered mapping, the ports of a module instance can be left
unconnected by omitting them from the connection list. Simply leave the position
blank by inserting two adjacent commas.

For named mapping, a port can be left unconnected in one of two ways: (i) by
omitting the port altogether; (ii) by including the port with nothing in the brackets
(the brackets must be present).

2-14 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Unconnected Ports

module AOI (A, B, C, D, F);
input A, B, C, D;
output F;
...

endmodule

module ...

AOI AOI1 (W1, W2, , W3, W4);

/* Equivalent...

AOI AOI1 (.F(W4), .D(W3), .B(W2), .A(W1));

AOI AOI1 (.F(W4), .D(W3), .B(W2), .A(W1), .C());
*/

endmodule

Unconnected port CUnconnected port C

Module 2: Modules

Comprehensive Verilog, V6.0 2-23
May 2001

Quiz 1

Notes:

Complete the Verilog code to describe this simple circuit.

2-15 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Quiz 1

module ANDOR (

endmodule

A

F

C

B

ANDOR

Comprehensive Verilog, V6.02-24

Module 2: Modules

May 2001

Quiz 2

Notes:

Now complete the Verilog code for this circuit, which uses the circuit on the
previous page.

2-16 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Quiz 2

ANDOR

ANDOR

J

K

L
M

N

P

Q

LOGIC
module LOGIC (

endmodule

Module 2: Modules

Comprehensive Verilog, V6.0 2-25
May 2001

Quiz 1 − Solutions

Notes:

2-17 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Quiz 1 – Solution

module ANDOR (A, B, C, F);

input A, B, C;

output F;

assign F = (A & B) | C;

endmodule

module ANDOR (A, B, C, F);

input A, B, C;

output F;

assign F = (A & B) | C;

endmodule

A

F

C

B

ANDOR

module ANDOR (A, B, C, F);

input A, B, C;

output F;

wire AB;

assign AB = A & B;

assign F = AB | C;

endmodule

module ANDOR (A, B, C, F);

input A, B, C;

output F;

wire AB;

assign AB = A & B;

assign F = AB | C;

endmodule

Comprehensive Verilog, V6.02-26

Module 2: Modules

May 2001

Quiz 2 − Solutions

Notes:

2-18 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Quiz 2 – Solution

ANDOR

ANDOR

J

K

L
M

N

P

Q

LOGIC

module LOGIC (J, K, L, M, N, P, Q);

input J, K, L, M, N;

output P, Q;

ANDOR G1 (J, K, L, P);

ANDOR G2 (P, M, N, Q);

endmodule

module LOGIC (J, K, L, M, N, P, Q);

input J, K, L, M, N;

output P, Q;

ANDOR G1 (J, K, L, P);

ANDOR G2 (P, M, N, Q);

endmodule

G1

G2

module LOGIC (J, K, L, M, N, P, Q);

input J, K, L, M, N;

output P, Q;

ANDOR G1 (.A(J), .B(K), .C(L), .F(P));

ANDOR G2 (.A(P), .B(M), .C(N), .F(Q));

endmodule

module LOGIC (J, K, L, M, N, P, Q);

input J, K, L, M, N;

output P, Q;

ANDOR G1 (.A(J), .B(K), .C(L), .F(P));

ANDOR G2 (.A(P), .B(M), .C(N), .F(Q));

endmodule

Module 2: Modules

Comprehensive Verilog, V6.0 2-27
May 2001

Vector Ports

Notes:

Ports (and wires) can represent buses or vectors as well as single bits. In the
example above, the port SEL is a two bit bus, with the most significant bit (MSB)
numbered 1 and the least significant bit (LSB) numbered 0.

Equally, we could have declared SEL as follows:

input [0:1] SEL;

or

input [1:2] SEL;

2-19 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Vector Ports

module MUX4 (SEL, A, B, C, D, F);
input [1:0] SEL;
input A, B, C, D;
output F;

// ...

endmodule

A

B

C

D

F

SEL

MUX4

Separate input declarationsSeparate input declarations

Comprehensive Verilog, V6.02-28

Module 2: Modules

May 2001

etc.

In each case, the left-hand value of the range numbers the MSB. The actual values
in the range declaration do not matter. Later, we will see that the value of a vector
is interpreted as an unsigned number, which is why it is important to understand
that the left-hand number in the declaration refers to the most significant bit.

Module 2: Modules

Comprehensive Verilog, V6.0 2-29
May 2001

Verilog Logic Values

Notes:

In Verilog, there are four built-in logic values. These are 0 (logic 0 or false), 1
(logic 1 or true), X (unknown) and Z (high impedance or floating).

A single bit value is represented as a single bit integer literal. This consists of the
value 1 (indicating a single bit) followed by 'b ('b stands for "binary") and the
value (0, 1, X or Z), for example 1'bX.

The value of a vector in Verilog is simply a row of logic values (0, 1, X and Z).
The value is preceded by the number of bits in the vector and the base. For
example, 8'bXXXX0101 is an eight bit binary value. Note that the name of a
vector denotes the entire vector (e.g. V in the example opposite).

2-20 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Verilog Logic Values

♦ Verilog logic values are:
� 1’b0 - logic 0, false, ground
� 1’b1 - logic 1, true, power
� 1’bX - unknown or uninitialised
� 1’bZ - high impedance, floating

♦ A vector is a row of logic values

7 5 3 2 06 14

V: X X X X 0 1 0 1

reg [7:0] V;
V = 8'bXXXX0101;

reg [7:0] V;
V = 8'bXXXX0101;

V[7] = 1'b0;
V[6] = B & V[0];
V[7] = 1'b0;
V[6] = B & V[0];

Comprehensive Verilog, V6.02-30

Module 2: Modules

May 2001

Individual bits of a vector can be assigned values or used in an expression by
using square brackets to indicate the bit. For example, V[7] refers to bit 7 of V (in
this case the MSB). This is sometimes called a bit select.

The declaration reg [7:0] V; that appears on this slide will be explained shortly.

Module 2: Modules

Comprehensive Verilog, V6.0 2-31
May 2001

Part Selects

Notes:

A part select denotes part of vector with contiguous index values e.g. V[2:5]. Part
selects can be used to read or assign part of a vector.

Vectors are assigned bit by bit from left to right, so the assignment W = V[2:5];
opposite leaves W[3]=V[2] etc. The assignment W[1:0] = 2'b11; leaves W[3] and
W[2] unchanged.

Note that the range of a vector can be specified as an ascending range (e.g. [0:7])
or a descending range (e.g. [3:0]). However, the range of a part select must have
the same direction as the range in the original declaration. So, the expression
W[0:1] is illegal, because W was declared with a descending range.

2-21 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Part Selects

V[2:5]

W[1:0] = 2'b11;W[1:0] = 2'b11;

reg [0:7] V;
reg [3:0] W;

reg [0:7] V;
reg [3:0] W;

W[0:1] = 2'b11;W[0:1] = 2'b11;

013 2

W: V[2] V[3] V[4] V[5]

013 2

W: V[2] V[3] 1 1

W = V[2:5];W = V[2:5];

W[2:2] = 1'b1;W[2:2] = 1'b1;
OKOK

wrong direction - illegalwrong direction - illegal

Comprehensive Verilog, V6.02-32

Module 2: Modules

May 2001

A part select denoting a single bit - for example, W[2:2] - is allowed.

Module 2: Modules

Comprehensive Verilog, V6.0 2-33
May 2001

Test Fixtures

Notes:

A test fixture is a Verilog module that describes the simulation environment for a
Verilog design. A test fixture usually includes code to generate the test vectors
and analyze the results (or compare the results with the expected output). A text
fixture will also contain an instance of the module being tested.

The term test fixture is the one commonly used in the Verilog world. The term test
bench is also used and has the same meaning.

2-22 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Test Fixtures

TSEL

TA
TB
TC
TD

TF
stimulus

instance
MUX4

Test Fixture (or Test bench)

module
MUX4

Comprehensive Verilog, V6.02-34

Module 2: Modules

May 2001

Outline of Test Fixture for MUX4

Notes:

Here is an outline of the Verilog code of a test fixture to test a module MUX4. It
contains two initial statements, one for applying the test stimulus and the other for
writing a table of results, and an instance of the module being tested. Initial
statements are described in the following pages.

A characteristic of test fixtures is that they do not have any ports.

2-23 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Outline of Test Fixture for MUX4

module MUX4TEST;

...

initial
...

MUX4 M (
.SEL(TSEL),
.A(TA),
.B(TB),
.C(TC),
.D(TD),
.F(TF));

initial
...

endmodule

DeclarationsDeclarations

Describe stimulusDescribe stimulus

Instance of module being testedInstance of module being tested

Write out ResultsWrite out Results

No portsNo ports

Module 2: Modules

Comprehensive Verilog, V6.0 2-35
May 2001

Initial Blocks

Notes:

An initial block is one of Verilog's procedural blocks (the other is the always
block). Procedural blocks are used to describe behavior, and are used in many
different situations. Here, an initial block is being used to described the stimulus,
or test patterns for the design.

The initial block starts executing at the start of simulation (time zero), and the
statements between begin and end execute in sequence from top to bottom.

#10 is a procedural delay of 10 time units. A procedural delay suspends the
execution of the initial block for the given period of time. Each statement may be
preceded by none, one or more delays. They are part of the statement, and aren't
followed by a semicolon (although one could be inserted):

2-24 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

Initial Blocks

initial // Stimulus
begin

TSEL = 2'b00;
#10 TA = 0;
#10 TA = 1;
#10 TSEL = 2'b01;
#10 TB = 0;
...

end

initial // Stimulus
begin

TSEL = 2'b00;
#10 TA = 0;
#10 TA = 1;
#10 TSEL = 2'b01;
#10 TB = 0;
...

end

Executes once
top to bottom
Executes once
top to bottom

Shorthand for 1’b0Shorthand for 1’b0

Procedural delayProcedural delay

00 01

XXXX
XXXXXXXXXXXXXXXXXXXX

TSEL

TA

TB

0 10 20 30 40 50

Procedural assignmentsProcedural assignments

Comprehensive Verilog, V6.02-36

Module 2: Modules

May 2001

#10 A = 0;

is the same as

#10; A = 0;

(except that the latter is two statements)

Statements such as SEL = 2'b00 and A = 0 are called procedural assignments.

Note that Verilog allows you to use integer values such as 0 and 1 instead of
numbers in the format 1'b0 and 1'b1. This topic will be discussed in detail later in
the course.

Module 2: Modules

Comprehensive Verilog, V6.0 2-37
May 2001

Registers

Notes:

So far we've seen values stored or carried by a Verilog wire. (Wires are the most
common type of the more general category of nets.) Verilog has a second data
type for storing a value called a register. Note that the term register does not imply
necessarily that a hardware register (e.g. a flip-flop) is being described.

Registers are used in behavioral modeling with procedural blocks (initial and
always). The rule for choosing between wires and registers is very simple, yet
causes a lot of confusion! The rule is: registers can only be assigned within
procedural blocks, and procedural blocks can only assign registers. Nets are
assigned a value from a continuous assignment, or from a port.

2-25 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

module MUX4TEST;

reg TA, TB, TC, TD;
reg [1:0] TSEL;

wire TF;

initial // Stimulus
begin

TSEL = 2'b00;
#10 TA = 0;
#10 TA = 1;
#10 TSEL = 2'b01;
#10 TB = 0;
...

end

MUX4 M (.SEL(TSEL), .A(TA), .B(TB), .C(TC), .D(TD), .F(TF));

...
endmodule

Registers

reg [1:0] TSEL

reg TA
reg TB
reg TC
reg TD

wire TF

Target (LHS) of procedural
assignment must be a register
Target (LHS) of procedural

assignment must be a register

A reg is a kind of registerA reg is a kind of register

Comprehensive Verilog, V6.02-38

Module 2: Modules

May 2001

Registers can be defined with the keyword reg. We will see other kinds of register
later on.

Module 2: Modules

Comprehensive Verilog, V6.0 2-39
May 2001

$monitor

Notes:

Now for the results analysis, which is done by a second initial block.

System Task

This initial block contains a call to the system task $monitor. System tasks are
built into the Verilog language (and simulator) and perform various utility
functions. Their names always start with the $ character.

$monitor

$monitor writes out a line of text to the simulator log (i.e. window and/or log file)
every time there is a change in the value of one of its reg or wire arguments (i.e. an

2-26 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

$monitor

♦ Can use $monitor to write a
table of results

module MUX4TEST;

reg TA, TB, TC, TD;
reg [1:0] TSEL;

wire TF;

initial // Stimulus
...

MUX4 M (.SEL(TSEL), .A(TA), .B(TB), .C(TC), .D(TD), .F(TF));

initial // Analysis
$monitor($time,,TSEL,,TA,TB,TC,TD,,TF);

endmodule

0 0 XXXX X
10 0 0XXX 0
20 0 1XXX 1
30 1 1XXX X
40 1 10XX 0
...

System taskSystem task

begin-end not neededbegin-end not needed

System functionSystem function
writes a spacewrites a space

Comprehensive Verilog, V6.02-40

Module 2: Modules

May 2001

event). Although $monitor is only called once (at time 0), the call creates a
monitor which remains active until it is switched off or until simulation ends.

System Function, $time

In this example, the first argument in the call to $monitor is $time. $time is a
system function. Like system tasks, system functions are built into the Verilog
language. Unlike system tasks, system functions return a value, in this case the
simulation time at which an event has triggered $monitor to write a line of text.
(Note that a change of simulation time does not itself trigger $monitor.)

The remaining arguments to $monitor are expressions. The values of all the
expressions are written out whenever one of them changes. A gap in the list (i.e. 2
adjacent commas) causes one space character to be written out.

Note that the initial block containing the call to $monitor does not contain the
begin and end lines. They are not necessary here, because there is only one
statement (the call to $monitor) in the initial block. However, they could have
been included. The first initial block does require begin and end, because it
contains more than one statement.

Module 2: Modules

Comprehensive Verilog, V6.0 2-41
May 2001

The Complete Test Fixture

Notes:

Here is the complete test fixture. It is a module with no ports, containing
declarations and statements. The three main statements inside the module are
concurrent; it does not matter what order they are written in. On the other hand,
the data types (wire, reg etc.) must be defined before they are used.

An initial block is considered to be a single statement, even though it may contain
a sequence of procedural statements. The statements inside the first initial block
are bracketed by begin ... end. The statements between begin and end are executed
in sequence from top to bottom.

Because the second initial block contains only one statement, the begin ... end
statement brackets are not required. (They could be included if preferred.)

2-27 • Comprehensive Verilog: Modules Copyright © 2001 Doulos

The Complete Test Fixture

module MUX4TEST;

reg TA, TB, TC, TD;
reg [1:0] TSEL;
wire TF

initial
begin

SEL = 2'b00;
#10 TA = 0;
#10 TA = 1;
#10 TSEL = 2'b01;
#10 TB = 0;
#10 TB = 1;
...

end

MUX4 M (.SEL(TSEL), .A(TA), .B(TB), .C(TC), .D(TD), .F(TF));

initial
$monitor($time,,TSEL,,TA,TB,TC,TD,,F);

endmodule

DeclarationsDeclarations

Concurrent
statements
Concurrent
statements

Comprehensive Verilog, V6.02-42

Module 2: Modules

May 2001

Comprehensive Verilog, V6.0 3-1
May 2001

Module 3
Numbers, Wires, and Regs

Comprehensive Verilog, V6.03-2

Module 3: Numbers, Wires, and Regs

May 2001

Numbers, Wires, and Regs

Notes:

3-2 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Numbers, Wires, and Regs

Aim
♦ To become familiar with more of the basic features of the
Verilog Hardware Description Language

Topics Covered
♦ Numbers
♦ Formatted output
♦ Timescales
♦ Always statements
♦ $stop and $finish
♦ Wires and Regs

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-3
May 2001

Numbers

Notes:

Vector values can be written as integer literals, consisting of strings of 0s, 1s, Xs
and Zs, preceded by the width (number of bits) and 'b (e.g. 8'b0101XXXX). To
specify numbers in other bases use 'o (octal), 'd (decimal) or 'h (hexadecimal).
Numbers may also contain underscores, which are ignored; they are used in long
numbers to aid readability.

Note that numbers (including the base and the digits) are not case sensitive.

If all the digits of a number are not specified, the most significant bits are filled
with zeroes. For example, 8'o77 represents 8'b00_111_111.

3-3 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Numbers

Numbers are not case sensitiveNumbers are not case sensitivereg [7:0] V;reg [7:0] V;

V = 8'b111XX000;V = 8'b111XX000;

V = 8'B111X_X000;V = 8'B111X_X000;

V = 8'hFF;V = 8'hFF;

V = 8'o77;V = 8'o77; Octal = 8'b00_111_111Octal = 8'b00_111_111

Hex = 8'b1111_1111Hex = 8'b1111_1111

Binary 111XX000Binary 111XX000

Binary 111XX000Binary 111XX000

V = 8'd10;V = 8'd10; Decimal = 8'b0000_1010Decimal = 8'b0000_1010

_ is ignored in numbers_ is ignored in numbers

Leading 0's are addedLeading 0's are added

Comprehensive Verilog, V6.03-4

Module 3: Numbers, Wires, and Regs

May 2001

Truncation and Extension

Notes:

We have seen that if all the digits of a number are not specified, the most
significant bits are filled with zeroes. However, if the leftmost digit is X or Z, the
missing bits are filled with Xs or Zs respectively. So 8'bx represents
8'bxxxx_xxxx, and 8'bzx represents 8'bzzzz_zzzx.

The values of regs and wires are considered to be unsigned quantities, even
though negative numbers may be used in expressions. Care is required because
sign extension does not take place.

In general, Verilog silently truncates or zero-fills vectors whenever a vector of the
wrong size is given. Hence, in the example opposite, 1'hFF is truncated to 1'b1
(because the number is one bit wide), and the value 1'b1 is then extended to 8 bits

3-4 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Truncation and Extension

No sign extension!!No sign extension!!

reg [7:0] V;reg [7:0] V;

V = 8'bX;V = 8'bX;

V = 8'bZX;V = 8'bZX;

V = 8'b1;V = 8'b1;

V = 1'hFF;V = 1'hFF; 1'hFF = 1'b1 (truncation) = 8'h01 (extension)1'hFF = 1'b1 (truncation) = 8'h01 (extension)

8'b000000018'b00000001

8'bZZZZZZZX8'bZZZZZZZX

8'bXXXXXXXX8'bXXXXXXXX

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-5
May 2001

by filling with zeros on the left (because we are assigning a one bit value (1'h...) to
an 8 bit vector (V)). You must always beware vector truncation in Verilog!

Comprehensive Verilog, V6.03-6

Module 3: Numbers, Wires, and Regs

May 2001

“Disguised” Binary Numbers

Notes:

The preceding examples have all looked like binary numbers (i.e. collections of
0s, 1s, Xs and Zs). The examples here will still be represented as binary numbers,
even though it may not be obvious.

10 is a 32 bit decimal number and not a two bit binary one!

-3 is also a 32 bit decimal number and will be represented in two's complement
format. However, Verilog will interpret the value of V as an unsigned 8 bit
number (i.e. 253)

Strings are converted to vectors by using the 8 bit ASCII code for each character.

3-5 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

“Disguised” Binary Numbers

reg [7:0] V;reg [7:0] V;

V = 10;V = 10;

V = -3;V = -3;

V = "A";V = "A";

10 = 'd10 = 32'd10 = 32'b1010 8'b0000101010 = 'd10 = 32'd10 = 32'b1010 8'b00001010

-3 = 32'hFF_FF_FF_FD 8'b1111_1101-3 = 32'hFF_FF_FF_FD 8'b1111_1101

ASCII = 8'd65 8'b01000001ASCII = 8'd65 8'b01000001

Not binary!Not binary!

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-7
May 2001

More than 32 bits

Notes:

The default width of a number if none is specified is 32 bits. (Strictly, the default
is specified by the simulator or synthesis tool implementation, but in practice it
will almost certainly be 32 bits.) This may cause unexpected results if wires or
regs greater than 32 bits are being used.

In the bottom example, R, which is 64 bits wide, is being assigned a value that is
only 32 bits wide. This number is extended to 64 bits with zeroes. Note that Xs or
Zs are only used to extend a number to its specified or default size, and not when
assigning a value to a reg or wire. To put it another way, the Verilog compiler
doesn't "look" at the right hand side of the assignment until after any X or Z
extension has been completed.

3-6 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

More than 32 bits

Default is 32 bitsDefault is 32 bits

reg [7:0] V;

reg [63:0] R;

reg [7:0] V;

reg [63:0] R;

V = R;V = R;

R = 'bz;R = 'bz;

V = R[7:0] (truncation)V = R[7:0] (truncation)

64'h00000000ZZZZZZZZ64'h00000000ZZZZZZZZ

R = V;R = V; R[63:8] = 56'b0, R[7:0] = V (extension)R[63:8] = 56'b0, R[7:0] = V (extension)

Comprehensive Verilog, V6.03-8

Module 3: Numbers, Wires, and Regs

May 2001

Formatted Output

Notes:

$display

In addition to $monitor, there is a second system task $display for writing output
to the simulator log. $display writes out data, once only, immediately it is called;
it does not create a continuous monitor.

$time

$time is a system function that returns the current simulation time.

The output from $display and $monitor can be formatted by including special
characters, called format specifiers, in the strings passed as arguments to the tasks.

3-7 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Formatted Output

initial // Write heading and table of results

begin

$display(" ",
"Time TSEL TA TB TC TD TF");

$monitor("%d %b %b %b %b %b %b",

$time, TSEL, TA, TB, TC, TD, TF);

end

initial // Write heading and table of results

begin

$display(" ",

"Time TSEL TA TB TC TD TF");
$monitor("%d %b %b %b %b %b %b",

$time, TSEL, TA, TB, TC, TD, TF);

end

Time TSEL TA TB TC TD TF
0 00 0001 0010 0100 1000 0001

10 00 1110 0010 0100 1000 1110
20 01 1110 0010 0100 1000 0010
30 01 1110 1101 0100 1000 1101

reg [3:0] TA, TB, TC, TD;

reg [1:0] TSEL;

wire [3:0] TF;

reg [3:0] TA, TB, TC, TD;

reg [1:0] TSEL;

wire [3:0] TF;

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-9
May 2001

Each format specifier %b, %d etc. is substituted with the value of the next
argument to be written in the list, formatted accordingly.

Comprehensive Verilog, V6.03-10

Module 3: Numbers, Wires, and Regs

May 2001

Formatting

Notes:

Here are the format specifiers that are understood by $display and $monitor.

Note that the backslash character is used as an escape character. If you need to
write out a literal backslash in a string, you must include two backslashes.
Similarly, if you want to write out a literal double quote, you must escape it with a
backslash. (Otherwise " is interpreted as marking the end of the format string.)

For example,
$display("The file is \"C:\\Files\\File.txt\"");

results in the text
The file is "C:\Files\File.txt"

3-8 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Formatting

♦ Special formatting strings:
� %b binary
� %o octal
� %d decimal
� %h hexadecimal
� %s ASCII string
� %v value and drive strength
� %t time (described later)
� %m module instance
� \n newline
� \t tab
� \" "
� \nnn nnn is octal ASCII value of character
� \\ \

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-11
May 2001

Formatting Text

Notes:

Formatted arguments can be organized in one of two ways. The first way is to
have a long string containing several special formatting strings, followed by a list
of arguments to be formatted. The second way is to arrange the arguments in
pairs, each pair consisting of a formatting string and a value to be formatted. Both
styles are shown.

Generally there must be exactly the same number of expressions following a
format string as there are format specifiers in the string. If there are too many
expressions, the default format is decimal. If there are too few, it is an error.

3-9 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Formatting Text

♦ One format string with correct number of values

♦ Two format strings

♦ Too many values

♦ Too few values

$display ("%b %b", Expr1, Expr2);$display ("%b %b", Expr1, Expr2);

$display ("%b", Expr1, " %b", Expr2);$display ("%b", Expr1, " %b", Expr2);

$display ("%b", Expr1, Expr2);$display ("%b", Expr1, Expr2);

Expr2 is written in decimalExpr2 is written in decimal

EquivalentEquivalent

$display ("%b %b %b", Expr1, Expr2);$display ("%b %b %b", Expr1, Expr2);

ERROR!!ERROR!!

Comprehensive Verilog, V6.03-12

Module 3: Numbers, Wires, and Regs

May 2001

The exception to this is %m, which does not require an expression. %m displays
the instance name of the module in which the $display or $monitor statement
appears.

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-13
May 2001

‘timescale

Notes:

`timescale

So far, time within a Verilog simulation has been a dimensionless number. More
usually, we want to simulate in terms of known physical time units, such as
picoseconds or nanoseconds. The units of time in Verilog can be set using the
`timescale compiler directive. (A compiler directive is a piece of Verilog syntax,
beginning with a backwards apostrophe (`), that tells the compiler something
about the rest of the Verilog code.)

The first quantity in the `timescale directive is the time unit. All delays in the
Verilog source code are multiples of this time unit. In the example, #10 means a
procedural delay of 10 ns.

3-10 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

`timescale 1ns/100ps

module MUX4x4TEST;

...

initial
begin

...
#10 A = 4'b1110;
...

end

initial
begin

...
$timeformat(-9, 1, "ns", 7);
$monitor("%t %b %b %b %b %b %b",

$realtime, SEL, A, B, C, D, F);
end

endmodule

`timescale

Time unit / Time precisionTime unit / Time precision

#10 = 10ns = 100 (x100ps)#10 = 10ns = 100 (x100ps)

Formatting times neatly and accuratelyFormatting times neatly and accurately

Comprehensive Verilog, V6.03-14

Module 3: Numbers, Wires, and Regs

May 2001

The second quantity in the `timescale directive is the precision. In this example,
the precision is 100ps, which means that delays are rounded to the nearest 100ps.
So #10 is 10ns or 100 100ps units.

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-15
May 2001

Multiple Timescales

Notes:

If one module in a design has a timescale, then a timescale must be supplied for all
the modules in the design, even if some of the modules do not use delays. The
recommended practice is always to specify a timescale before every module.

It is quite possible that each of the modules in a design has a different timescale.
In this case the first value - the time units - is used in the way that has been
described. For the second value - the precision - the simulator calculates the
smallest precision from all the timescales in the design, and uses that value,
ignoring the individual precision values. (But note that some simulators allow the
precision to be changed when a design is loaded for simulation; others ignore the
precision altogether).

3-11 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Multiple Timescales

`timescale 1ns/1ns
module A (...);
...

`timescale 1ns/1ns
module A (...);
...

// no timescale
module C (...);
...

// no timescale
module C (...);
...

`timescale 10ns/10ns
module B (...);
...

`timescale 10ns/10ns
module B (...);
...

Compilation order affects directives:

verilog A.v B.v C.v

verilog B.v A.v C.v

verilog C.v A.v B.v

Smallest precision
is 1ns

Smallest precision
is 1ns

C timescale is 10ns/10nsC timescale is 10ns/10ns

Error - C has no timescale!Error - C has no timescale!

C timescale is 1ns/1nsC timescale is 1ns/1ns

C.v

B.v

A.v

All or no modules must
have timescales

All or no modules must
have timescales

Comprehensive Verilog, V6.03-16

Module 3: Numbers, Wires, and Regs

May 2001

Some Verilog tools allow several source files to be compiled at the same time.
This is the same as first concatenating the files and compiling the single
concatenated file. A compiler directive like `timescale affects all modules that
follow the directive in the source file, and in all subsequent files compiled at the
same time, until another directive appears. This means that if some modules have
timescales and others do not, the latter may derive their timescales from
previously compiled modules.

We have seen that if any module in a design has a timescale, then every module in
the design must also have a timescale. A module can be given a default timescale
by compiling it last. However, it is recommended that every module always be
given an explicit timescale, even if there are no delays in that module.

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-17
May 2001

$timeformat

Notes:

`timescale is used to specify the size of the units of delays ("#10 means 10ns").
When writing times using $display and $monitor, the $timeformat system task
may be used to specify the way they are written. $timeformat is used with the
format specifier %t.

$timeformat

$timeformat may only be called once in a design, so it is best included in the test
fixture. The four parameters indicate respectively (i) the units in which times are
written, with -12 meaning picoseconds, -9 nanoseconds, -6 microseconds etc.; (ii)
the number of decimal places to display; (iii) a text string to follow the time; (iv)

3-12 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

$timeformat

`timescale 1ns/100ps

$timeformat(-9, 1, "ns", 7);

$monitor("%t", ...
$realtime, ...

`timescale 1ns/100ps

$timeformat(-9, 1, "ns", 7);

$monitor("%t", ...
$realtime, ...

#10 10.0ns

time as a real numbertime as a real number

time units (-9 = ns)time units (-9 = ns)

number of decimal placesnumber of decimal places

suffixsuffix

minimum field widthminimum field width

Comprehensive Verilog, V6.03-18

Module 3: Numbers, Wires, and Regs

May 2001

the minimum number of characters to display. If necessary, the field is padded on
the left with spaces.

Note that $timeformat enables times to be written in a unit that is different to the
`timescale unit.

$realtime

$realtime is a system function that returns the current simulation time as a real
number in the `timescale units of the module from which it was called. $realtime
should be used in preference to $time, because the latter will round delays to the
nearest (integer) time unit.

In the example above, a delay of #10 is written as shown. This is because the
`timescale directive indicates that #10 is 10ns, and the $timeformat task causes the
value to be written out in ns, with one decimal place, using the suffix "ns" and
with a leading space to give a total of 7 characters, including the decimal point and
the suffix.

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-19
May 2001

Always

Notes:

We have already met one form of procedural block, the initial statement. The
other kind of procedural block is the always block. An always block is very
similar to an initial block, but instead of executing just once, it executes
repeatedly throughout simulation. Having reached the end, it immediately starts
again at the beginning, and so defines an infinite loop.

In this example, an always block is being used to generate a clock waveform. Note
that anything assigned within the always block must be defined as a register. Note
also that the register Clock is assigned in two different procedural blocks; the
initial and the always. The initial block causes Clock to be set to 0 at the beginning
of simulation. Thereafter, the always block makes new assignments to Clock. This

3-13 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

module ClockGen (Clock);
output Clock;
reg Clock;

initial
Clock = 0;

always
#5 Clock = ~Clock;

endmodule

module ClockGen (Clock);
output Clock;
reg Clock;

initial
Clock = 0;

always
#5 Clock = ~Clock;

endmodule

initial
Count = 0;

always #10
Count = Count + 1;

initial
Count = 0;

always #10
Count = Count + 1;

Clock

Outputs may be regsOutputs may be regs

Always

♦ Clock generator

Binary count

Comprehensive Verilog, V6.03-20

Module 3: Numbers, Wires, and Regs

May 2001

explicit initialization is necessary here, because regs are initialized to 'bx by
default.

The second example shows how to use an always block to generate a binary
counting sequence. Again, an initial block is used to provide a starting value for
Count. When Count reaches its maximum value (e.g. 4'b1111 for a four-bit reg),
adding 1 causes its value to "roll over" to 0 and the count sequence recommences.

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-21
May 2001

$stop and $finish

Notes:

These examples instance the clock generator module from the previous slide.

If a design contains always statements like those on the previous slide, then
potentially it will simulate indefinitely. To prevent this, you can tell the simulator
to execute for a limited time; you can interrupt the simulation; or you can include
breakpoints in the Verilog code.

$stop

The system task $stop is used to set breakpoints. When $stop is called, simulation
is suspended. The intention is that you can then use an interactive debugger to
examine the state of the simulation before continuing.

3-14 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

$stop and $finish

module ClockGen_Test;
wire Clock;

ClockGen CG1_ (Clock);

endmodule

module ClockGen_Test;
wire Clock;

ClockGen CG1_ (Clock);

endmodule

module ClockGen_Test;
wire Clock;

ClockGen CG1_ (Clock);

initial
#100 $stop;

initial
#200 $finish;

endmodule

module ClockGen_Test;
wire Clock;

ClockGen CG1_ (Clock);

initial
#100 $stop;

initial
#200 $finish;

endmodule

Runs forever!Runs forever!

BreakpointBreakpoint

Quit simulationQuit simulation

Comprehensive Verilog, V6.03-22

Module 3: Numbers, Wires, and Regs

May 2001

$finish

The system task $finish is used to quit or abandon simulation. It can be used in
contexts such as that shown to finish a simulation that includes a clock generator
or other infinite loop. Alternatively, it may be possible to exit from the simulator
using its commands or graphical interface.

Note that in this example, Clock must be a wire, not a register. This is because in
the current module, Clock is driven by a port, not assigned within a procedural
block. Clock is a wire, despite the fact that it is connected to a port which is itself
a register within the module ClockGen.

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-23
May 2001

Using Registers

Notes:

To complete this section, we are going to look in more detail at the rules for using
nets and registers.

As far as registers are concerned, the fundamental rule is in two parts: you must
use registers when assigning values in initial and always blocks; in fact you only
need to use registers in this context.

This rule must be followed even if it means that an output port has also to be
declared as a reg. In this case the output and reg declarations must match, i.e. for
vectors they must use the same LSB and MSB.

3-15 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Using Registers

♦ Necessary when assigning in initial or always
♦ Only needed when assigning in initial or always
♦ Outputs can be regs

module UsesRegs (OutReg);
output [7:0] OutReg;
reg [7:0] OutReg;

reg R;

initial
R = ...

always
OutReg = 8'b...

endmodule

module UsesRegs (OutReg);
output [7:0] OutReg;
reg [7:0] OutReg;

reg R;

initial
R = ...

always
OutReg = 8'b...

endmodule

Declarations agreeDeclarations agree

Must be registersMust be registers

Comprehensive Verilog, V6.03-24

Module 3: Numbers, Wires, and Regs

May 2001

Using Nets

Notes:

The rule for when to use nets is easy: You use nets whenever you don't use
registers! As we have already seen, you must use nets for input ports, and when
making continuous assignments. You must also use nets to connect to the outputs
of module or primitive instances. You can use implicit declarations for scalar
wires, but for vectors you have to declare appropriate wires explicitly.

3-16 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Using Nets
module UsesWires (InWire, OutWire);

input InWire;

output OutWire;

wire [15:0] InternalBus;

AnotherModule U1 (InternalBus, ...);

YetAnother U2 (InternalBus, ...);

not (ImplicitWire, InWire);

and (AnotherWire, ImplicitWire, ...);

assign OutWire = ...

endmodule

Declare internal vectorsDeclare internal vectors

inputs, must be nets
outputs may be nets
inputs, must be nets
outputs may be nets

Instance outputs must
connect to nets

Instance outputs must
connect to nets

assign requires netsassign requires nets

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-25
May 2001

Module Boundaries

Notes:

The rules for nets and registers mean that a single connection may sometimes be
modeled using both a net and a register! In the example above, the module Top
has a reg R connected to the input port InWire of the instance S of Silly. But we
know that module inputs must be wires.

Similarly, the output OutReg of Silly, which is a reg, must be connected to a wire
when Silly is instanced.

Behind the scenes, there are implicit continuous assignments at the module
boundaries.

3-17 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Module Boundaries

module Top;

reg R;

wire W1, W2;

Silly S (.InWire(R), .OutWire(W1),

.OutReg(W2));

...

endmodule

module Top;

reg R;

wire W1, W2;

Silly S (.InWire(R), .OutWire(W1),

.OutReg(W2));

...

endmodule

reg

reg

wirewire

wire

wire

module Silly (InWire, OutWire,

OutReg);

input InWire;

output OutWire, OutReg;

reg OutReg;

initial OutReg = InWire;

assign OutWire = InWire;

endmodule

module Silly (InWire, OutWire,

OutReg);

input InWire;

output OutWire, OutReg;

reg OutReg;

initial OutReg = InWire;

assign OutWire = InWire;

endmodule

Comprehensive Verilog, V6.03-26

Module 3: Numbers, Wires, and Regs

May 2001

Inout Ports

Notes:

inout

An inout port is bidirectional and, like an input, must be a net. This restriction is
not a problem with inputs, because you should never need to declare an input as a
reg. There is a potential problem with inout ports, because you may want to use an
always block to assign a value to an inout - the rules mean that you can't! Instead
you must use a reg in the always statement and a continuous assignment to drive
the value of the reg onto the inout.

3-18 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Inout Ports

module UsesInout (Data);
inout [7:0] Data;

reg [7:0] Data_reg;

always
... = Data;

always
Data_reg = 8'b...

assign Data = Data_reg;

endmodule

module UsesInout (Data);
inout [7:0] Data;

reg [7:0] Data_reg;

always
... = Data;

always
Data_reg = 8'b...

assign Data = Data_reg;

endmodule

inout can’t be reginout can’t be reg

need a regneed a reg

assign requires a wireassign requires a wire

inout used as inputinout used as input

inout = bidirectionalinout = bidirectional

always

assign

Data_reg

inout

always

Data

Module 3: Numbers, Wires, and Regs

Comprehensive Verilog, V6.0 3-27
May 2001

Wire vs. Reg − Summary

Notes:

In summary,

• You must use regs as the target of assignments in initial or always blocks.

• You must use wires as the target of continuous assignments, for input and
inout ports and for connecting to module or primitive instance outputs or
inouts.

One way of understanding all this is that wires are used in structural models
(netlists) and regs in behavioral models. A continuous assignment is considered as
essentially a structural statement.

3-19 • Comprehensive Verilog: Numbers, Wires and Regs Copyright © 2001 Doulos

Wire vs. Reg – Summary

♦ You must use registers
� when assigning in initial statements
� when assigning in always statements

♦ You must use nets
� when assigning in continuous assignments
� for inputs and inouts
� when connecting module or primitive instance outputs or inouts

♦ Wires are structural; regs are behavioral

instance or assigninstance or assign

wirewire
regreg

initial or alwaysinitial or always

Comprehensive Verilog, V6.03-28

Module 3: Numbers, Wires, and Regs

May 2001

Comprehensive Verilog, V6.0 4-1
May 2001

Module 4
Always Blocks

Comprehensive Verilog, V6.04-2

Module 4: Always Blocks

May 2001

Always Blocks

Notes:

4-2 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Always Blocks

Aim
♦ To learn about RTL synthesis from always blocks and how to
use if statements

Topics Covered
♦ RTL always statements
♦ If statements
♦ Incomplete assignment and latches
♦ Unknown, don’t care and tristate

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-3
May 2001

RTL Always Statements

Notes:

Always

The examples above show two examples of always statements that may be
synthesized. The first example shows an always statement being used to describe
combinational logic; in the second example a D-type flip-flop - a sequential
circuit - is being described.

The always statement is one of the most powerful and flexible statements in
Verilog, for it can be used to describe the behavior of any part of a system at any
level of abstraction from Boolean equations through register transfer level to
complex algorithms.

4-3 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

RTL Always Statements

reg Q;
...

always @(posedge Clock)

Q <= D;

reg Q;
...

always @(posedge Clock)

Q <= D;

Combinational always

Clocked always

MUX

reg OP;

...

always @(SEL or A or B or C)

if (SEL)

OP = A and B;

else

OP = C;

reg OP;

...

always @(SEL or A or B or C)

if (SEL)

OP = A and B;

else

OP = C;

OP

SEL

C

A

B

0

1

D Q

Clock

Event controlEvent control

“Non-blocking” assignment“Non-blocking” assignment

Comprehensive Verilog, V6.04-4

Module 4: Always Blocks

May 2001

Event control

The @ and list of names in brackets after the word always is called an event
control. The always statement will execute whenever any of the wires or regs in
the event control changes value. Note that the word 'or' in the event control is not
a logical operator, but the separator that is used in an event control. In the first
example, what it means is "whenever SEL changes value or A changes value or B
changes value or C changes value, execute the always statement". The event
control in the second example causes the always statement to be executed
whenever there is a rising edge on Clock. Clocked always statements will be
discussed more fully in a later section.

An event control as the first statement in an always block is sometimes called a
sensitivity list.

Remember that only regs may be given values in an always statement. Hence both
OP and Q must be declared as regs However, only Q is synthesized as a hardware
register (a flip-flop). The Verilog term reg does not necessarily mean that a
register will be inferred. Regs in clocked always statements are often assigned
using the non-blocking assignment operator (<=), which will be described later.

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-5
May 2001

If Statements

Notes:

Here is an example of an always statement describing a combinational logic
function. The always statement contains two if statements.

If

The first if statement tests the value of ~C1, and then executes one of the two
alternative assignments depending on that value. If ~C1 has a logic one value (i.e.
C1 is 1'b0), it is considered to be 'true', and the first assignment (F = A) is
executed. If ~C1 is logic zero or unknown, it is considered 'false' and the second
assignment is executed.

4-4 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

If Statements

always @(C1 or C2 or C3 or A or B)
begin

if (~C1)
F = A;

else
F = B;

if (C2 & C3) F = ~F;

end

0

1
MUX

C3

C2

F0

1
MUX

A

B

C1

(F)(F)

if => muxif => mux

0

1
MUX

Comprehensive Verilog, V6.04-6

Module 4: Always Blocks

May 2001

The else part of an if statement may be omitted. So the second if statement inverts
the value of F if C2 and C3 are both high; otherwise (if either C2 or C3 is low) F is
not inverted.

Synthesis

If statements are synthesized by generating a multiplexer for any reg assigned
within the if statement. The select input on each mux is driven by logic
determined by the if condition, and the data inputs are determined by the
expressions on the right hand sides of the assignments. If a register is unassigned
under some conditions, then the old value is passed through the mux, as in the
second if statement shown opposite.

Note that there is not a one-to-one correspondence between the elements of the
Verilog model, and the synthesized hardware. In particular, the reg F is in a sense
synthesized as three separate wire segments. Furthermore, when the logic is
optimized it may not be possible to see anything in the optimized design that
corresponds to the original reg, F.

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-7
May 2001

Begin-End

Notes:

The syntax of the if statement allows for one statement in each branch. If more
than one statement is needed, then the statements must be bracketed using begin
and end. Here, two statements are executed in each branch, so begin-ends are
required in both parts.

Note that an if statement, including its else and the statements in each of the two
branches is considered as a single statement. Therefore the always statement
opposite does not require a begin-end (although one could be used, as shown)

4-5 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Begin-End

always @(SEL or A or B or C or D)
begin

if (SEL)
begin
F = A;
G = C;

end
else
begin
F = B;
G = D;

end

end

begin-end optionalbegin-end optional

begin-end requiredbegin-end required

SEL

B

A

D

C

0

1
MUX

0

1
MUX

G

F

Comprehensive Verilog, V6.04-8

Module 4: Always Blocks

May 2001

Else If

Notes:

Testing a series of conditions is achieved by nesting if statements. This is best
written as shown, with successive else if statements. Each condition is tested in
turn until a condition is found which evaluates to true, then that branch of the
nested if statement is executed, with the effect that earlier conditions take priority
over later conditions.

4-6 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Else If

always @(C0 or C1 or C2 or A or B or C or D)
if (C0)

F = A;
else if (C1)

F = B;
else if (C2)

F = C;
else

F = D;

Else if =>priorityElse if =>priority

C2

C0

F
A

C1

B
C

D 0

1
MUX
0

1
MUX 0

1
MUX
0

1
MUX

0

1
MUX
0

1
MUX

Nested if statementsNested if statements

Complete “sensitivity list”Complete “sensitivity list”

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-9
May 2001

Nested If and Begin-End

Notes:

Begin-end are sometimes needed to tell the Verilog compiler which if an else
belongs to. In the examples above the two top-most if statements are the same,
despite the different indentation. The begin-end in the third example "hides" the
inner if from the else. Compilers don't look at the indentation! Nor do they read
your mind!

4-7 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Nested If and Begin-End

F

A

0

10

1

C2

C1

B

if (C1)
if (C2)

F = A;
else

F = B;

if (C1)
if (C2)
F = A;

else
F = B;

if (C1)
if (C2)
F = A;

else
F = B;

if (C1)
if (C2)
F = A;

else
F = B;

B

A

0

10

1

F

C2

C1

if (C1)
begin

if (C2)
F = A;

end
else

F = B;

if (C1)
begin
if (C2)

F = A;
end
else
F = B;

FB

A

0

10

1

C2

C1

F

Verilog cannot read your mind!Verilog cannot read your mind!

SameSame

Comprehensive Verilog, V6.04-10

Module 4: Always Blocks

May 2001

Incomplete Assignment

Notes:

If a reg is only assigned under certain input conditions, then it will retain its old
value under other input conditions.You can think of the always statement shown
above as behaving like this:

always @(Enable or Data)

if (Enable)

Q = Data;

else

4-8 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Incomplete Assignment

always @(Enable or Data)
if (Enable)
Q = Data;

always @(Enable or Data)
if (Enable)
Q = Data;

G

Q

Data

Enable

Beware unwanted latches!Beware unwanted latches!

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-11
May 2001

Q = Q;

Synthesis tools will handle this by inserting a transparent latch to store the old
value. This sometimes happens accidentally when trying to describe
combinational logic using a procedural block, and can result in the synthesis of
unwanted latches.

Comprehensive Verilog, V6.04-12

Module 4: Always Blocks

May 2001

FPGAs and Transparent Latches

Notes:

FPGAs

Some FPGA architectures do not include transparent latches. To implement a
transparent latch therefore requires the use of asynchronous feedback, and their
use is discouraged in some FPGA devices; it is therefore a good idea to check the
data sheet for your chosen device before you start writing your Verilog code.

4-9 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

FPGAs and Transparent Latches

♦ Some FPGA devices don’t have latches
♦ Asynchronous feedback will be created

always @(G or D)
if (G)
Q = D;

always @(G or D)
if (G)
Q = D;

G

D Q

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-13
May 2001

Unknown and Don’t Care

Notes:

Comparison with X is treated as FALSE by simulation and synthesis. You can
write if statements to take account of possible X values, by explicitly testing for 0
and 1, as shown in the example above. The third condition is ignored by synthesis
tools, because the hardware has been fully described.

In practice, RTL code does not usually include X handling like this, because Xs
are not usually generated, except when used as "don't care" values.

Explicit assignment to X is treated as "don't care" by synthesis tools. This may
enable the synthesis tool to optimize more effectively, but with the drawback that
the simulation results will differ between the RTL model and synthesized gates.

4-10 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Unknown and Don’t Care

F = 1'bX;
if (A)
F = 0;

if (B)
F = 1;

F = 1'bX;
if (A)
F = 0;

if (B)
F = 1;

if (A == 1'b0)
F = 1;

else if (A == 1'b1)
F = 0;

else
F = 1'bx; // Relevant for simulation only

if (A == 1'b0)
F = 1;

else if (A == 1'b1)
F = 0;

else
F = 1'bx; // Relevant for simulation only

Prevents latchesPrevents latches

Simulation and synthesis
may differ

Simulation and synthesis
may differ

X handling must be separated for synthesis

Assignment to X means don’t care

Use == to compare valuesUse == to compare values

X is considered falseX is considered false

Comprehensive Verilog, V6.04-14

Module 4: Always Blocks

May 2001

This is because in RTL simulation F may have the value 1'bX, when in simulation
of the synthesized netlist, F is 1'b0 or 1'b1.

This example introduces the comparison operator ==. This is used in expressions
to compare two values. The expression A == 1'b0 will have the value 1'b1
(TRUE) if A has the value 1'b0 and 1'b0 or 1'bX (FALSE) otherwise.

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-15
May 2001

Conditional Operator

Notes:

As an alternative to using an if statement, Verilog provides the conditional
operator. This can be used in expressions in initial and always statements and in
continuous assignments.

The conditional operator consists of two characters, ? and :, and three operands.
The value of an expression that uses this operator depends on the value of the first
operand, which comes before the ?. If this operand is TRUE (non zero), the value
of the whole expression is the value of the second operand (following the ?). If the
first operand is FALSE, the value of the whole expression is the third operand
(following the :).

4-11 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Conditional Operator

♦ Equivalent to:

♦ Mux using continuous assignment

A ? B : C Conditional

value = A ? B : C;value = A ? B : C;

if (A)
value = B;

else
value = C;

if (A)
value = B;

else
value = C;

assign F = SEL ? A : B;assign F = SEL ? A : B;

Comprehensive Verilog, V6.04-16

Module 4: Always Blocks

May 2001

The conditional operator is very useful in modeling multiplexors and tristate
buffers.

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-17
May 2001

Unknown Condition

Notes:

There is an important difference between the conditional operator and an if
statement that is apparent when the condition is unknown. In an if statement, an
unknown condition is considered to be false, and the else part of the if statement is
executed. For the conditional operator, if the first operand is unknown, then the
value of the conditional expression is formed by a bitwise comparison of the bits
of the second and third operands. Where the values of the bits in corresponding
positions are the same, the value of the corresponding bit in the result is that value.
Where the bit values are different or if one of them is unknown, the corresponding
bit in the result is X.

4-12 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Unknown Condition

♦ Different from

value = 1'bX ? B : C;value = 1'bX ? B : C;

if (1'bX)
value = B;

else
value = C;

if (1'bX)
value = B;

else
value = C;

value = 1'bX ? 4'b010X : 4'b0111;value = 1'bX ? 4'b010X : 4'b0111;

This statement will be executedThis statement will be executed

value = 4'b01XX

Bitwise comparisonBitwise comparison

Comprehensive Verilog, V6.04-18

Module 4: Always Blocks

May 2001

In the example shown, the resulting value is 4'b01XX because the two leftmost
bits of 4'b010X and 4'b0111 are the same, the third bits are different, and one of
the rightmost bits is X.

Module 4: Always Blocks

Comprehensive Verilog, V6.0 4-19
May 2001

Tristates

Notes:

Tristate drivers are inferred by assigning to Z. This can be done using a
continuous assignment or an always statement.

When a tristate buffer is being used at an inout port, it is usually much easier to
use a continuous assignment, similar to the one shown, rather than an always
statement. This is because inout ports and connections to them must be nets
(usually this means wires) and the target of a continuous assignment is a net.

4-13 • Comprehensive Verilog: Always Blocks Copyright © 2001 Doulos

Tristates

OpData

Enable

always @(Enable or Data)
if (Enable)
Op = Data;

else
Op = 1'bz;

always @(Enable or Data)
if (Enable)
Op = Data;

else
Op = 1'bz;

assign Op = Enable ? Data : 1'bZ;assign Op = Enable ? Data : 1'bZ;

Using always

Using assign

Comprehensive Verilog, V6.04-20

Module 4: Always Blocks

May 2001

Comprehensive Verilog, V6.0 5-1
May 2001

Module 5
Procedural Statements

Comprehensive Verilog, V6.05-2

Module 5: Procedural Statements

May 2001

Procedural Statements

Notes:

5-2 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Procedural Statements

♦ Aim
♦ To learn the remaining procedural statements in Verilog, and
how to use them to describe combinational logic.

♦ Topics Covered
♦ Case, casez and casex statements
♦ full_case and parallel_case directives
♦ For, while, repeat and forever loops
♦ Integers
♦ Disable
♦ Named blocks
♦ Rules for synthesizing combinational logic

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-3
May 2001

Case Statement

Notes:

Case

The case statement is an efficient way of executing a multi-way branch. The case
statement lists possible values of the expression at the top of the statement. When
the case statement is executed, one and only one branch will be executed
depending on the value of the expression. This will be the branch whose label
matches the expression. Labels are separated from the statements by colons. The
default branch will, if present, catch any cases not covered explicitly by the case
statement. However, it is not necessary to cover all possible cases, so a default
statement is always optional. In this example, the default statement is meaningless
for synthesis, because all the hardware values that SEL can take have appeared
explicitly as case labels.

5-3 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Case Statement

A

B

C

D

F

SEL

always @(SEL or A or B or C or D)

case (SEL)

2'b00: F = A;

2'b01: F = B;

2'b10: F = C;

2'b11: F = D;

default: F = 1'bX;

endcase

Simulation onlySimulation only

Comprehensive Verilog, V6.05-4

Module 5: Procedural Statements

May 2001

Note that the selector of the case statement can be a vector and indeed any Verilog
expression.

Synthesis

The case statement is synthesized in the same way as the if statement - by
generating multiplexers for each reg assigned within the case.

The case statement provides a general and convenient way of describing the
behavior of combinational logic so long as the number of inputs is fairly small.

FPGAs

It's important to remember that certain FPGA architectures are fanin limited; that
is, the architecture is composed from logic blocks each of which has a small, fixed
number of inputs. If the fanin limit is exceeded by the case statement, then it will
be necessary to synthesis multiple logic blocks and multiple logic levels.
Significant improvements in area and timing can be achieved by intelligently
partitioning the logic to fit the architecture.

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-5
May 2001

Case Statement (Cont.)

Notes:

This example shows some more features of the case statement. Two or more cases
can be included in the same branch by separating the values with commas (3'b001,
3'b010, 3'b100 : ...). Several statements may be executed for a given value of the
expression by including the statements in a begin ... end block.

As with if statements, latches will be synthesized if any register is incompletely
assigned in the always block.

5-4 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Case Statement (Cont.)

case (Code)
3'b000:
begin
P = 1;
Q = 1;

end
3'b001, 3'b010, 3'b100:
begin
Q = 1;
R = 1;

end
3'b110, 3'b101, 3'b011:
R = 1;

endcase
Some cases missing - OKSome cases missing - OK

begin-end needed herebegin-end needed here

AlternativesAlternatives

Latches may be inferredLatches may be inferred

Comprehensive Verilog, V6.05-6

Module 5: Procedural Statements

May 2001

Casez Pattern Matching

Notes:

A variation of the case statement is casez. The syntax and behavior are the same as
those of the case statement, except that the value Z in a number represents a "don't
care" value. For this reason the character ? can be used in place of Z in any
number, because it more clearly shows the meaning in this context.

In the example shown, the first label matches any value of the case expression
whose MSB is 1.- it matches whenever A is 1.

The second and third labels here overlap. For example, 8'b00100000 matches both
8'b001???00 and 8'b0?1????0. The first one has the priority, so Op would be set to
2'b01 in this case.

5-5 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Casez Pattern Matching

wire A, B, C, D;
wire [3:0] E;

reg [1:0] Op;

always @(A or B or C or D or E)
casez ({A, B, C, D, E})
8'b1???????: Op = 2'b00;
8'b001???00: Op = 2'b01;
8'b0?1????0: Op = 2'b10;
8'b0111??11: Op = 2'b11;
default: Op = 2'bXX;

endcase

? Z synonyms? Z synonyms

Don’t careDon’t care

Catch allCatch all

ConcatenationConcatenation

Not endcasezNot endcasez

Tested in sequence (overlapping cases are okay)Tested in sequence (overlapping cases are okay)

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-7
May 2001

The casez statement in this example could be written using an if statement:

if (A)

Op = 2'b00;

else if (~A & ~B & C & ~E[1] & ~E[0])

Op = 2'b01;

else if (~A & C & ~E[0])

Op = 2'b10;

else if (~A & B & C & D & E[1] & E[0])

Op = 2'b11;

else

Op = 2'bxx;

Concatenation

Note also the use of concatenation in the case expression. The case expression is a
vector made up from the elements listed inside the curly brackets ({}).

Comprehensive Verilog, V6.05-8

Module 5: Procedural Statements

May 2001

Casex Pattern Matching

Notes:

Another variation is the casex. This is similar in concept to the casez, the
difference being that both X and Z are pattern matching characters.

5-6 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Casex Pattern Matching

wire A, B, C, D;
wire [3:0] E;

reg [1:0] Op;

always @(A or B or C or D or E)
casex ({A, B, C, D, E})
8'b1XXXXXXX: Op = 2'b00;
8'b010XXXXX: Op = 2'b01;
8'b001XXX00: Op = 2'b10;
8'b0111XX11: Op = 2'b11;
default: Op = 2'bXX;

endcase

X and Z = don’t careX and Z = don’t care

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-9
May 2001

Casez and Casex Truth Tables

Notes:

Here are the truth tables for comparing values in casez and casex statements. As
has been explained, Z matches any value in a casez statement; Z and X match any
value in a casex statement.

casez versus casex

Note that unlike the casez, a casex cannot be used to explicitly detect X's in an
expression. This is because even any Xs and Zs in the case expression are treated
as wildcards (i.e. they match any value).

For this reason casex is not recommended, because if the case expression is
unknown during simulation (which is possible), it will match the first case value,

5-7 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Casez and Casex Truth Tables

casex (1'bX)
1'b0 : $display("This will be written every time");
1'b1 : $display("This will NEVER be written");

endcase

casex (1'bX)
1'b0 : $display("This will be written every time");
1'b1 : $display("This will NEVER be written");

endcase

Beware!
X here is also treated as “don’t care”X here is also treated as “don’t care”

casez 0 1 X Z

0 1 0 0 1

1 0 1 0 1

X 0 0 1 1

Z 1 1 1 1

casex 0 1 X Z

0 1 0 1 1

1 0 1 1 1

X 1 1 1 1

Z 1 1 1 1

Comprehensive Verilog, V6.05-10

Module 5: Procedural Statements

May 2001

and the corresponding statement will be executed. The same problem may arise
with a casez statement, if the case expression contains Zs, but this is less likely to
occur.

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-11
May 2001

Priority Encoder Using Case

Notes:

One unusual feature of the Verilog case statement syntax is that the case
expression (at the top) is allowed to be a constant, and the case values (inside)
may be variables!

In this style of case statement, it is possible that the case expression may match
more than one case value. If so, the first one - starting at the top - is used. In other
words, the case statement is being used to describe priority, and is equivalent to a
set of nested if-else statements.

5-8 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Priority Encoder Using Case

case (1'b1)
A[0] : F = 2'b00;
A[1] : F = 2'b01;
A[2] : F = 2'b10;
A[3] : F = 2'b11;

endcase

case (1'b1)
A[0] : F = 2'b00;
A[1] : F = 2'b01;
A[2] : F = 2'b10;
A[3] : F = 2'b11;

endcase

if (A[0])
F = 2'b00;

else if (A[1])
F = 2'b01;

else if (A[2])
F = 2'b10;

else
F = 2'b11;

if (A[0])
F = 2'b00;

else if (A[1])
F = 2'b01;

else if (A[2])
F = 2'b10;

else
F = 2'b11;

EquivalentEquivalent

Variables for
case labels
Variables for
case labels

Constant case expressionConstant case expression

Comprehensive Verilog, V6.05-12

Module 5: Procedural Statements

May 2001

Full and Parallel Case Statements

Notes:

If a case statement contains labels that are mutually exclusive, it is said to be
"parallel"; if it covers all possible cases, it is said to be "full". A full and parallel
case statement infers one or more multiplexers. Synthesis tools are usually able to
recognize full and parallel case statements automatically.

Where the synthesis tool is not able to recognize that the case labels are mutually
exclusive, a priority encoder is synthesized instead. If it is known that the labels
are in fact mutually exclusive, the synthesis tool must be told that this is indeed so,
so that a multiplexer will be synthesized.

5-9 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Full and Parallel Case Statements

case (A)
4'b0001: F = 2'b00;
4'b0010: F = 2'b01;
4'b0100: F = 2'b10;
4'b1000: F = 2'b11;
default: F = 2'bxx;

endcase

case (A)
4'b0001: F = 2'b00;
4'b0010: F = 2'b01;
4'b0100: F = 2'b10;
4'b1000: F = 2'b11;
default: F = 2'bxx;

endcase

“auto parallel, auto full”

case expressions are
mutually exclusive
case expressions are
mutually exclusive

default ensures all possible
values of A are considered

- no latches

default ensures all possible
values of A are considered

- no latches

one-hot decoderone-hot decoder

F[0]

F[1]

A[2]
A[0]

A[1]
A[0]

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-13
May 2001

Similarly, where the labels do not appear to cover every possible case, but do in
fact do so in the context of the design, it is possible to tell the synthesis tool, so
that unwanted default logic or latches are not synthesized.

Comprehensive Verilog, V6.05-14

Module 5: Procedural Statements

May 2001

Priority Encoder Using Casez

Notes:

This casez statement is full (it has a default), but it is not parallel. For example, if
all the bits of A were 1, this would in fact match all the labels; the priority rules
state that the first statement (only) would be executed, so a priority encoder is
being described.

5-10 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Priority Encoder Using Casez

casez (A)
4'b???1: F = 2'b00;
4'b??1?: F = 2'b01;
4'b?1??: F = 2'b10;
4'b1???: F = 2'b11;
default: F = 2'bxx;

endcase

casez (A)
4'b???1: F = 2'b00;
4'b??1?: F = 2'b01;
4'b?1??: F = 2'b10;
4'b1???: F = 2'b11;
default: F = 2'bxx;

endcase

case expressions are not
mutually exclusive

case expressions are not
mutually exclusive

default ensures all possible
values of A are considered

- no latches

default ensures all possible
values of A are considered

- no latches

priority encoderpriority encoder

“NOT parallel, auto full”

F[0]

F[1]

A[2]
A[0]

A[1]
A[0]

A[1]
A[0]

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-15
May 2001

One-Hot Decoder Using Casez

Notes:

Suppose that in fact the value of A is known to have a one-hot encoding, so that at
any given time all the elements of A are 0, except one. The synthesis tool must be
told that this is the case, otherwise unnecessary logic will be inferred.

Synthesis Directive

One way of doing this is to include a synthesis directive in the Verilog code. This
is a Verilog comment that is ignored by simulators (it is just a comment...), but
which is read and actioned by synthesis tools (so it's more than a comment!).

5-11 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

One-Hot Decoder Using Casez

one-hot decoderone-hot decoder

casez (A) // synopsys full_case parallel_case
4'b???1: F = 2'b00;
4'b??1?: F = 2'b01;
4'b?1??: F = 2'b10;
4'b1???: F = 2'b11;

endcase

casez (A) // synopsys full_case parallel_case
4'b???1: F = 2'b00;
4'b??1?: F = 2'b01;
4'b?1??: F = 2'b10;
4'b1???: F = 2'b11;

endcase

“It is parallel and full”“It is parallel and full”
case expressions are not

mutually exclusive
case expressions are not

mutually exclusive

no defaultno default

F[0]

F[1]

A[2]
A[0]

A[1]
A[0]

Comprehensive Verilog, V6.05-16

Module 5: Procedural Statements

May 2001

parallel_case

The parallel_case directive applies to a case statement, and tells the synthesis tool
that the case statement has mutually exclusive case values.

full_case

The full_case directive also applies to a case statement. It tells the synthesis tool
that the case statement does in fact cover all possible values of the case
expression.

WARNING!

These directives must be used with great care, as they tell the synthesis tool
and simulator to interpret the same Verilog code in different ways.

Most synthesis tools support these directives, but they all have a slightly different
syntax.

// synopsys parallel_case

// synopsys full_case

// synopsys full_case parallel_case

// synthesis parallel_case

// synthesis full_case

// synthesis full_case parallel_case

// pragma parallel_case

// pragma full_case

// pragma full_case parallel_case

(These are the directives for Synopsys Design Compiler and FPGA Express;
Synplicity Synplify and Exemplar Leonardo Spectrum respectively)

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-17
May 2001

IEEE 1364.1

There is a proposal (IEEE 1364.1) to standardize these directives across different
synthesis tools.

// rtl_synthesis parallel_case

// rtl_synthesis full_case

// rtl_synthesis full_case, parallel_case

Comprehensive Verilog, V6.05-18

Module 5: Procedural Statements

May 2001

One-Hot Decoder Using Case

Notes:

This example shows a case statement with a parallel_case directive, being used to
describe a one-hot decoder for synthesis.

5-12 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

One-Hot Decoder Using Case

case (1'b1) // synopsys parallel_case
A[0] : F = 2'b00;
A[1] : F = 2'b01;
A[2] : F = 2'b10;
A[3] : F = 2'b11;
default : F = 2'bXX;

endcase

case (1'b1) // synopsys parallel_case
A[0] : F = 2'b00;
A[1] : F = 2'b01;
A[2] : F = 2'b10;
A[3] : F = 2'b11;
default : F = 2'bXX;

endcase

F[0] = A[1] | A[3];
F[1] = A[2] | A[3];
F[0] = A[1] | A[3];
F[1] = A[2] | A[3];

EquivalentEquivalent

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-19
May 2001

Is full_case Necessary?

Notes:

No! You can achieve the same results by using "don't care" values. All three of the
examples shown here result in the same logic (a one-hot decoder and no latches)
being synthesized.

5-13 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Is full_case Necessary?

always @(A)
begin

F = 2'bxx;
case (A)
4'b0001 : F = 2'b11;
4'b0010 : F = 2'b10;
4'b0100 : F = 2'b01;
4'b1000 : F = 2'b00;

endcase
end

always @(A)
begin

F = 2'bxx;
case (A)

4'b0001 : F = 2'b11;
4'b0010 : F = 2'b10;
4'b0100 : F = 2'b01;
4'b1000 : F = 2'b00;

endcase
end

always @(A) // synopsys full_case
case (A)

4'b0001 : F = 2'b11;
4'b0010 : F = 2'b10;
4'b0100 : F = 2'b01;
4'b1000 : F = 2'b00;

endcase

always @(A) // synopsys full_case
case (A)

4'b0001 : F = 2'b11;
4'b0010 : F = 2'b10;
4'b0100 : F = 2'b01;
4'b1000 : F = 2'b00;

endcase

always @(A)
case (A)

4'b0001 : F = 2'b11;
4'b0010 : F = 2'b10;
4'b0100 : F = 2'b01;
4'b1000 : F = 2'b00;
default : F = 2'bxx;

endcase

always @(A)
case (A)

4'b0001 : F = 2'b11;
4'b0010 : F = 2'b10;
4'b0100 : F = 2'b01;
4'b1000 : F = 2'b00;
default : F = 2'bxx;

endcase

“No need for a default”“No need for a default”

Explicit defaultExplicit default

Comprehensive Verilog, V6.05-20

Module 5: Procedural Statements

May 2001

For Loops

Notes:

For loops are sequential statements that are often used in conjunction with
vectors. The statements inside the loop are repeated for a number of values
described by the iteration scheme at the top of the loop. In this example, the loop
is executed 4 times with the loop parameter I taking the values 0, 1, 2 and 3
respectively.

There is an important rule governing for loops. The value of the loop parameter
can be read inside the loop, but should not be assigned, so you should not alter the
execution of a loop by changing the value of the loop parameter inside the loop!
(The IEEE Verilog standard does not enforce this rule, but you are strongly
recommended to follow it.)

5-14 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

For Loops

always @(A or B)
begin

G = 0;
for (I = 0; I < 4; I = I + 1)
begin

F[I] = A[I] & B[3-I];
G = G ^ A[I];

end
end

always @(A or B)
begin
G = 0;
for (I = 0; I < 4; I = I + 1)
begin

F[I] = A[I] & B[3-I];
G = G ^ A[I];

end
end

0

A[0]

GA[1]
A[2]

A[3]

for => repeated H/Wfor => repeated H/W

A[0]

B[3]
F[0]

A[1]

B[2]
F[1]

A[2]

B[1]
F[2]

A[3]

B[0]
F[3]

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-21
May 2001

Synthesis

For loops are synthesized to repeated hardware structures, providing the bounds of
the loop are fixed. In the example, the first assignment in the loop would result in
the synthesis of 4 AND gates. The second assignment synthesizes to a cascaded
structure of XOR gates, because the value assigned in one pass through the loop is
consumed in the subsequent pass. In this case, the optimizer would be able to
restructure the XORs into a tree to balance the delay paths. However, in more
complex cases the optimizer may not be able to restructure such a cascaded logic
structure, particularly if any arithmetic operations are included, so such loops
must be written with care.

Synthesis is unable to handle loops with variable bounds, as the synthesizer is
unable to determine how many copies of the loop contents to generate.

Comprehensive Verilog, V6.05-22

Module 5: Procedural Statements

May 2001

For Loop Variable Declaration

Notes:

A for loop variable such as I must be declared as a register. Here, it is tempting to
declare I as reg [1:0], because I is being used to count from 0 to 3. This would not
work, because regs are considered to have unsigned values, and two bits gives a
maximum value of 3. The assignment I = I + 1 would cause the value of I to "roll
over" when I has this maximum value. (2'b11 + 1 = 2'b00) So, the value of I would
always be less than 4, and the loop would not terminate when simulated.

The problem can be solved for this example, by making sure that the width of I is
sufficiently large. However, this would not work in a loop where the loop variable
was decremented instead of being incremented: the value of a reg, being unsigned,
is always greater than zero.

5-15 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

For Loop Variable Declaration

♦ How to declare I?

♦ What if ...?

always @(A or B)
begin

G = 0;
for (I = 0; I < 4; I = I + 1)
begin
F[I] = A[I] & B[3-I];
G = G ^ A[I];

end
end

always @(A or B)
begin
G = 0;
for (I = 0; I < 4; I = I + 1)
begin

F[I] = A[I] & B[3-I];
G = G ^ A[I];

end
end

reg [1:0] I;reg [1:0] I;

reg [2:0] I;reg [2:0] I;

for (I = 3; I >= 0; I = I - 1)
...

for (I = 3; I >= 0; I = I - 1)
...

Too small (3 + 1 = 0)Too small (3 + 1 = 0)

OK...OK...

Can’t use a reg...Can’t use a reg...

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-23
May 2001

Fortunately, there is a solution to this problem, which is described in the next
slide.

Comprehensive Verilog, V6.05-24

Module 5: Procedural Statements

May 2001

Integers

Notes:

Verilog has a special type of register used to represent a mathematical integer. The
value stored in a Verilog data type integer is exactly the same as the value stored
in the data type reg [31:0] , but the values are treated differently in any context
where numbers are required; integers are interpreted as two's complement signed
numbers, whereas regs are interpreted as unsigned binary numbers.

The data type reg should be used to represent hardware, whereas the data type
integer should be used for loop variables and wherever a pure mathematical
number is required (e.g. a counter in a test fixture).

5-16 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Integers

initial
begin
F = 0;
F = F - 1;
$display(F);
I = 0;
I = I - 1;
$display(I);

end

initial
begin

F = 0;
F = F - 1;
$display(F);
I = 0;
I = I - 1;
$display(I);

end

reg [3:0] F;
integer I;

reg [3:0] F;
integer I;

4 bits, unsigned4 bits, unsigned

32 bits, signed32 bits, signed

1515

-1-1

Unsigned vs signed

always @(A)
for (I = 3; I >= 0; I = I - 1)
F[I] = A[I] & B[3-I];

always @(A)
for (I = 3; I >= 0; I = I - 1)

F[I] = A[I] & B[3-I];

always @(A)
for (F = 3; F >= 0; F = F - 1)
F[I] = A[I] & B[3-I];

always @(A)
for (F = 3; F >= 0; F = F - 1)

F[I] = A[I] & B[3-I];

Infinite loop

OK

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-25
May 2001

Other Loop Statements

Notes:

In addition to for loops, Verilog includes three other loop statements: repeat loops,
while loops and forever loops.

Unlike the for loop, these loop statements should be considered not to be
synthesizable. They are useful in test fixtures and high-level behavioral models.

while

A while loop executes as long as the condition is true (i.e. not zero).

5-17 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Other Loop Statements

♦ The for loop can be used for synthesis

♦ Three other loops used for test fixtures and algorithms

for (initialise; condition; assignment)
...

for (initialise; condition; assignment)
...

while (condition)
...

while (condition)
...

repeat (expression)
...

repeat (expression)
...

forever
...

forever
...

Loops while condition is trueLoops while condition is true

Loops expression timesLoops expression times

Infinite loopInfinite loop

Comprehensive Verilog, V6.05-26

Module 5: Procedural Statements

May 2001

repeat

A repeat loop executes a fixed number of times, depending on the value of the
repeat expression. Repeat loops may be synthesizable in the same way as for
loops, although not all tools support this.

forever

A forever loop keeps executing unconditionally. It may only be interrupted by
using the disable statement, as described on the next page.

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-27
May 2001

Disable

Notes:

The disable statement causes a begin-end block to stop executing. This has the
effect that when the disable is executed, the next statement to be executed will be
the statement immediately following the block being disabled.

Named Block

To be disabled, a begin-end block must have a name. A begin-end block is named
by following the word begin with a colon and the name.

Disable provides a means of breaking out of loops, either to continue with the next
iteration of the loop, or to stop executing the loop altogether. (C.f. the continue
and break statements in C, or the next and exit statements in VHDL.) This is

5-18 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Disable

♦ The disable statement can be used to jump out of a block

begin : Outer

forever
begin : Inner

...
disable Inner;
...
disable Outer;
...

end

end

begin : Outer

forever
begin : Inner
...
disable Inner;
...
disable Outer;
...

end

end

Named blocksNamed blocks

Comprehensive Verilog, V6.05-28

Module 5: Procedural Statements

May 2001

illustrated opposite where disable Inner in effect jumps to the next loop iteration,
and disable Outer jumps out of the loop altogether.

Disable may also be used as a return statement from a task. This will be described
later in the course.

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-29
May 2001

Named Blocks

Notes:

If a begin-end block has a name, it is possible to declare a register, such as a reg or
an integer, inside it. This indicates that the register so declared can only be used
inside that block.

Scope

In software engineering, the term scope is used to describe this concept. The scope
of an identifier (such as a reg) is the region of the program text within which the
identifier's characteristics are understood. The scope of the reg Tmp in this
example extends from the its declaration to the end of the named begin-end block.
Two or more identifiers can be declared with the same name, provided that the

5-19 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Named Blocks

♦ Regs can be declared inside
named blocks

♦ Integers too...

begin : blk
reg Tmp;

if (~C1)
Tmp = A;

else
Tmp = B;

if (C2 & C3)
Tmp = ~Tmp;

F = Tmp;
end

begin : blk
reg Tmp;

if (~C1)
Tmp = A;

else
Tmp = B;

if (C2 & C3)
Tmp = ~Tmp;

F = Tmp;
end

always @(A)
begin : FourAnds
integer I;
for (I = 3; I >= 0; I = I - 1)

F[I] = F[I] & A[3-I];
end

always @(A)
begin : FourAnds

integer I;
for (I = 3; I >= 0; I = I - 1)
F[I] = F[I] & A[3-I];

end

Comprehensive Verilog, V6.05-30

Module 5: Procedural Statements

May 2001

declarations are in different scopes. It is illegal to declare the same name more
than once in the same scope.

Verilog defines four regions of scope: modules, named blocks, tasks and
functions. Tasks and functions will be described in a later section.

Module 5: Procedural Statements

Comprehensive Verilog, V6.0 5-31
May 2001

Combinational Always

Notes:

The example above shows an always statement being used to infer combinational
logic for synthesis. Note the use of a wide range of Verilog statements, including
vectors, concatenation, a for loop and a disable statement.

The diagram shows the synthesized gates, after optimization.

An always statement is synthesized to combinational logic if the following
conditions are true:

• The sensitivity list is complete. In other words all the combinational inputs
must be listed after the @ timing control at the top of the always statement..

5-20 • Comprehensive Verilog: Procedural Statements Copyright © 2001 Doulos

Combinational Always

reg [1:0] F;

always @(A or B or C or D)

begin : Blk

reg [3:0] R;

R = {A, B, C, D};

F = 0;

begin: Loop

integer I;

for (I = 0; I < 4; I = I + 1)

if (R[I])

begin

F = I;

disable Loop; // Jumps out of loop

end

end // Loop

end

All inputs in sensitivity listAll inputs in sensitivity list

Outputs assigned under all
conditions

Outputs assigned under all
conditions

No feedbackNo feedback

A

B
C
D

F[1]

F[0]

Comprehensive Verilog, V6.05-32

Module 5: Procedural Statements

May 2001

• Outputs are completely assigned. Every time the always block is executed
(i.e. whenever one of the inputs changes value), all the outputs must be
assigned a value. If this is not true, then it is not combinational but
sequential logic that is being described and unwanted latches may be
synthesized.

• There is no combinational feedback. Again, this would result in
asynchronous sequential behavior.

Comprehensive Verilog, V6.0 6-1
May 2001

Module 6
Clocks and Flip-Flops

Comprehensive Verilog, V6.06-2

Module 6: Clocks and Flip-Flops

May 2001

Clocks and Flip-Flops

Notes:

6-2 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Clocks and Flip-Flops

Aim
♦ To understand how to write Verilog HDL in order to achieve
efficient synthesis of clocked logic

Topics Covered
♦ Synthesizing latches and flip-flops
♦ Simulation races
♦ Synchronous and asynchronous resets
♦ Synthesizable always templates
♦ Implying and avoiding registers

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-3
May 2001

Latched Always

Notes:

This always statement shows how to infer latches. The only difference between
this and the style used to infer combinational logic is that the value of the output is
deliberately not specified for every possible input change.

In order to infer latches predictably, use an if statement that is conditional on the
latch enable, as shown here.

6-3 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Latched Always

♦ The “correct” way to infer latches

always @(ENB or D or A or B or SEL)
if (ENB)
begin
Q = D;
if (SEL)

F = A;
else

F = B;
end

always @(ENB or D or A or B or SEL)
if (ENB)
begin

Q = D;
if (SEL)
F = A;

else
F = B;

end

Complete sensitivity listComplete sensitivity list

No feedbackNo feedback

Incomplete assignmentIncomplete assignment

SEL

A

B

G

F

QD

ENB

G

Comprehensive Verilog, V6.06-4

Module 6: Clocks and Flip-Flops

May 2001

Edge Triggered Flip-Flop

Notes:

Although the top example will simulate correctly as a D type flip-flop, it will be
synthesized as a transparent latch (if it is synthesized at all). This is because
synthesis tools will think the event control is incomplete, since D is missing. To
infer a flip-flop requires that the synthesis tool is given an even bigger hint than
correct functionality! The "hint" is the reserved word posedge or negedge.

It is if (and only if) an always statement contains the reserved word posedge or
negedge in its event control, that flip-flops will be inferred.

The second example shows the simplest possible clocked always statement. It
describes a single edge triggered (D type) flip-flop, clocked on the rising edge of
Clock.

6-4 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Edge Triggered Flip-Flop

always @(Clock)
if (Clock)
Q = D;

always @(Clock)
if (Clock)
Q = D;

D

Clock G

Q

always @(posedge Clock)
Q = D;

always @(posedge Clock)
Q = D;

D

Clock

Q

Flip-flopFlip-flop

Latch!Latch!

or negedgeor negedge

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-5
May 2001

Avoiding Simulation Races

Notes:

Non-determinism

One characteristic of Verilog is that the language is non-deterministic. In other
words, it is possible to write Verilog code that simulates differently on different
simulators. This is not a fault with one of the simulators; the Verilog language has
this feature.

An example of non-determinism occurs when describing flip-flops in separate
always statements, as shown here. When a positive clock edge occurs in the
simulation, both always statements will be executed. It is not possible to tell
which one the simulator will execute first. If the statements are executed in the
order shown, then b will be updated first, and the new value of b will be used to

6-5 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Avoiding Simulation Races

♦ Race to read and write b!

♦ To fix the simulation race...

always @(posedge clock)
b = a;

always @(posedge clock)
c = b;

always @(posedge clock)
b = a;

always @(posedge clock)
c = b;

always @(posedge clock)
begin

tmpa = a;
#1 b = tmpa;

end

always @(posedge clock)
begin

tmpb = b;
#1 c = tmpb;

end

always @(posedge clock)
begin

tmpa = a;
#1 b = tmpa;

end

always @(posedge clock)
begin

tmpb = b;
#1 c = tmpb;

end
Not recommended!Not recommended!

Comprehensive Verilog, V6.06-6

Module 6: Clocks and Flip-Flops

May 2001

update c. So b and c will both have the same value. On the other hand, if the
always statements are executed in reverse order (and there is nothing in the
definition of Verilog to say that they can't be), then c will be given the old value of
b, before b is updated with the value of a.

For synthesis, there is no ambiguity, and two flip-flops will be inferred. There
may therefore be differences between the simulation results of the RTL
description and the synthesized gates. In effect there is a hold time violation in the
RTL model.

We could avoid this problem by using temporary regs and adding delays in the
always statements, as shown. This would work (synthesis ignores delays, but they
make the simulation correct), but it is clumsy and inelegant.

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-7
May 2001

Non-Blocking Assignments

Notes:

Simulation races can be avoided by using the RTL (or "non-blocking")
assignment operator (<=) as shown above. (The ordinary assignment operator, =,
is properly called the "blocking" assignment operator. The terms "blocking" and
"non-blocking" will be explained later in the course.)

Unlike an ordinary or blocking assignment, a non-blocking or RTL assignment
doesn't immediately update the reg on the left-hand side. Instead it schedules an
event on the left hand side reg, which happens only at the end of the simulation
time step. So in this example, b and c don't get their new values until after both the
assignments have been executed.

6-6 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Non-Blocking Assignments

♦ Preferred solution – use non-blocking assignments

always @(posedge Clock)
b <= a;

always @(posedge Clock)
c <= b;

always @(posedge Clock)
b <= a;

always @(posedge Clock)
c <= b;

RecommendedRecommended

a c

Clock

b

How would you write an asynchronous reset?How would you write an asynchronous reset?

“Non-blocking” or “RTL” assignment“Non-blocking” or “RTL” assignment

Comprehensive Verilog, V6.06-8

Module 6: Clocks and Flip-Flops

May 2001

Asynchronous Set or Reset

Notes:

Here are two examples showing how to describe flip-flops with asynchronous
inputs.

Note that the clock and the asynchronous set or reset must appear in the event
control, and both must be qualified by posedge or negedge as appropriate. This is
true even though the set or reset is level-sensitive. If the asynchronous set or reset
is not so qualified, the model would not simulate correctly.

6-7 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Asynchronous Set or Reset

always @(posedge Clock or posedge Reset)

if (Reset)

Q1 <= 0;

else

Q1 <= D;

always @(posedge Clock or posedge Reset)
if (Reset)

Q1 <= 0;

else

Q1 <= D;

D Q1

Clock

Reset

D Q2

Clock

Set
always @(posedge Clock or posedge Set)

if (Set)

Q2 <= 1;

else

Q2 <= D;

always @(posedge Clock or posedge Set)

if (Set)

Q2 <= 1;

else

Q2 <= D;

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-9
May 2001

Synchronous vs. Asynchronous Actions

Notes:

This example shows some more complex synchronous logic with an asynchronous
reset. Again, the active edge of the reset is included in the event control together
with the clock edge.

Any asynchronous inputs must be tested before the synchronous behavior is
described. The pattern is:

always @(active_clock_edge or active_async_edge)
if (async_is_active)

perform_async_operation
else

perform_synchronous_operation

6-8 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

always @(posedge Clock or posedge Reset)
if (Reset)
Q <= 0;

else if (Load)
Q <= Data;

else
Q <= Q + 1;

Synchronous vs. Asynchronous Actions

What if the device has no asynchronous reset?What if the device has no asynchronous reset?

Load

Clock

Data

1
Count

Reset

Asynchronous resetAsynchronous reset

Synchronous loadSynchronous load

Comprehensive Verilog, V6.06-10

Module 6: Clocks and Flip-Flops

May 2001

Technology Specific Features

Notes:

If you are designing an FPGA, you will need to bring architecture specific features
of the device into your Verilog source code to achieve optimal results.

For example, Xilinx FPGA devices have a STARTUP block, which controls a
dedicated global set/reset net (GSR). When asserted, the GSR sets or resets all the
flip-flops in the device. The STARTUP block can be configured so that the GSR
can be used in normal device operation. FPGA synthesis tools can usually infer
the use of the GSR automatically. However, there are situations where automatic
inference isn't the best option, and the global reset needs to be instantiated
explicitly.

6-9 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Technology Specific Features

module Block1 (Clock, Reset, D, Q);
input Clock, Reset, D;
output Q;

...

STARTUP Dummy (.GSR(Reset));

always @(posedge Clock or posedge Reset)
if (Reset)
Q <= 0;

else
Q <= D;

...

endmodule

Technology specific
component instantiation
Technology specific

component instantiation

Black box for synthesisBlack box for synthesis

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-11
May 2001

The Verilog code opposite shows an instance of the Xilinx STARTUP module,
with the first (GSR) input connected to Reset. This plays no part in simulation, but
tells the Xilinx place and route tools to use the global GSR net to route the reset.

Unfortunately, this means that the Verilog is no longer technology independent.

Comprehensive Verilog, V6.06-12

Module 6: Clocks and Flip-Flops

May 2001

Synthesis Templates

Notes:

These templates show how to infer combinational logic, transparent latches and
flip-flops from behavioral Verilog code.

When writing Verilog for synthesis, all always statements should follow one of
these templates.

The proposed IEEE 1364.1 RTL synthesis standard defines what templates
synthesis tools should support.

Note that for combinational logic, continuous assignments may also be used.

6-10 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Synthesis Templates

always @(All_Inputs)

begin

... Pure combinational logic

end

always @(All_Inputs)

begin

... Pure combinational logic

end

always @(posedge Clock)
begin

... Flipflops + logic

end

always @(posedge Clock)

begin

... Flipflops + logic
end

always @(All_Inputs)

if (Enable)

begin

... Transparent latches

end

always @(All_Inputs)

if (Enable)

begin

... Transparent latches

end

always @(posedge Clock or posedge Reset)

if (Reset)

... Asynchronous actions

else
... Synchronous actions

always @(posedge Clock or posedge Reset)

if (Reset)

... Asynchronous actions

else

... Synchronous actions

IEEE std 1364.1?IEEE std 1364.1?

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-13
May 2001

RTL Synthesis Tool Architecture

Notes:

RTL synthesis tools typically work in two stages, shown in the diagram. The first
stage, sometimes called HDL synthesis or translation, reads the Verilog HDL
source code and converts it into a technology independent structural
representation. This representation usually takes the form of a hierarchical
network of technology independent boolean primitives such as NAND gates, D-
type flip-flops, adders, multiplexers etc. The second stage converts this
intermediate representation into an optimized network of primitives taken from
the library of a specific cell based ASIC technology (the most popular to date
being CMOS gate arrays and FPGAs).

The second stage performs both optimization and mapping. Optimization is often
based on the technique of multi-level boolean minimization, where a multi-level

6-11 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

RTL Synthesis Tool Architecture

♦ No optimization

♦ Structure inferred from the Verilog

♦ Combinational logic optimisation
♦ Timing constraints between flip-
flops

RTL VerilogRTL Verilog

HDL SynthesisHDL Synthesis

Technology independent
structural representation
Technology independent
structural representation

Gate level netlistGate level netlist

Optimisation and MappingOptimisation and Mapping

Comprehensive Verilog, V6.06-14

Module 6: Clocks and Flip-Flops

May 2001

network of boolean equations is restructured to minimize area (by sharing
common boolean terms) and meet timing constraints (by reducing the number of
logic levels on the critical path and swapping in faster, high-drive cells). A more
specialized technique, state encoding, is used to optimize finite state machines by
changing the encoding in the state register.

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-15
May 2001

RTL Synthesis

Notes:

A Register Transfer Level description (in Verilog HDL) must explicitly
synchronize all operations with a clock - that is the working definition of RTL.
The essence of RTL is that you define the registers and the transfers between
those registers that occur on each clock tick (i.e. the combinational logic). RTL
synthesis tools infer the existence of registers directly from the Verilog HDL
source following a few simple rules.

RTL optimization

RTL synthesis tools keep the RTL structure defined in the Verilog HDL source
code. In other words, RTL synthesis does not add registers, delete registers, merge

6-12 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

RTL Synthesis

♦ Flip-flops are inferred by synchronizing assignments to
clocks

♦ RTL synthesis optimizes combinational logic
♦ RTL synthesis does not add, delete or move flip-flops

clock

combinational logic

Comprehensive Verilog, V6.06-16

Module 6: Clocks and Flip-Flops

May 2001

registers, move registers, or optimize registers. RTL synthesis does optimize the
combinational logic between the registers.

Some tools do perform more than the pure RTL synthesis described here. For
example, many (but not all) tools merge equivalent flip-flops, as we shall see later.

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-17
May 2001

Inferring Flip-Flops

Notes:

regs assigned in a procedural block that is synchronized to a clock are candidates
to become flip-flops. Whether a reg is synthesized as a flip-flop or a wire depends
on how it is used. regs that are assigned a new value before being read in each
clock cycle will become wires (nextA in the example opposite). Regs that are read
before being assigned in any clock cycle become flip-flops (Up in the example
opposite). Finally, regs that are assigned with non-blocking assignments become
flip-flops unconditionally.

These rules are explained more fully in the following pages.

6-13 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Inferring Flip-Flops

reg Up;
reg [11:0] Acc, nextA;

always @(posedge SampleClock)
begin

if (Up)
begin
nextA = Acc + Delta;
if (nextA >= Max)
Up <= 0;

end
else
begin
nextA = Acc - Delta;
if (nextA[11] == 1'b1) // nextA < 0
Up <= 1;

end
Acc <= nextA;

end

>=

+/-
Delta

Max
Up

Acc

SampleClock

nextA

Comprehensive Verilog, V6.06-18

Module 6: Clocks and Flip-Flops

May 2001

Flip-Flop Inference − Blocking
Assignment

Notes:

Whether or not a flip-flop is inferred from a blocking assignment depends on
whether or not the value of the reg being assigned needs to be remembered from
one clock edge to the next.

• If, on an active clock edge, the reg is assigned a value before its value is
used, then no flip-flop is required.

• If the value of the reg is used before a new value is assigned to it, then the
value that is used will be the value that was assigned on a previous clock.
Therefore a flip-flop is required.

6-14 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flop Inference – Blocking Assignment

♦ Write before read => no flip-flop

♦ Read before write => flip-flop

always @(posedge Clock)
begin
Tmp = ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

always @(posedge Clock)
begin
Tmp = ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end
IP3

OP1
IP1
IP2

Tmp

IP1
IP2

IP3

OP1
Tmp

always @(posedge Clock)
begin
OP1 <= Tmp | IP3;
Tmp = ~(IP1 & IP2);

end

always @(posedge Clock)
begin
OP1 <= Tmp | IP3;
Tmp = ~(IP1 & IP2);

end

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-19
May 2001

Flip-Flop Inference − Non-Blocking

Notes:

The rule for flip-flop inference from non-blocking assignments is straightforward:
a flip-flop is always inferred!

Because a flip-flop is always inferred when a non-blocking assignment is used, it
is generally recommended that a non-blocking assignments are used whenever
flip-flops are required.

Note that when non-blocking assignments are used, the order of the assignments
does not matter. This is because regs assigned with a non-blocking assignment are
not updated immediately.

6-15 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flop Inference – Non-Blocking

♦ Non-blocking assignments always infer flip-flops

♦ Order of assignments doesn’t matter

always @(posedge Clock)
begin
Tmp <= ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

always @(posedge Clock)
begin
Tmp <= ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

always @(posedge Clock)
begin
OP1 <= Tmp | IP3;
Tmp <= ~(IP1 & IP2);

end

always @(posedge Clock)
begin
OP1 <= Tmp | IP3;
Tmp <= ~(IP1 & IP2);

end

Same!Same!

IP1
IP2

IP3

OP1
Tmp

IP1
IP2

IP3

OP1
Tmp

Comprehensive Verilog, V6.06-20

Module 6: Clocks and Flip-Flops

May 2001

Flip-Flop Inference − Blocking
Assignment

Notes:

If a reg is assigned values with blocking assignments, and the reg is used outside
the always block in which it is assigned, then a flip-flop will be inferred, even if
the reg is not required to store a value from one clock cycle to the next.

In the example at the bottom of the slide, Tmp is used in the continuous
assignment to OP2, and so a flip-flop is inferred.

However, it is not good practice to infer flip-flops like this, because of the
possibility of simulation races, as described earlier in this section. Rewriting the

6-16 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flop Inference – Blocking Assignment

♦ Write before read => no flip-flop

♦ reg used outside always => flip-flop

always @(posedge Clock)
begin

Tmp = ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

always @(posedge Clock)
begin
Tmp = ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

IP3

OP1
IP1
IP2

Tmp

always @(posedge Clock)
begin

Tmp = ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

assign OP2 = Tmp;

always @(posedge Clock)
begin
Tmp = ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

assign OP2 = Tmp;

IP1
IP2

IP3

OP1

Tmp/OP2(Tmp)

Tmp is used outside the alwaysTmp is used outside the always

Tmp is only used inside the alwaysTmp is only used inside the always

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-21
May 2001

bottom example as follows is to be preferred, because (i) it is clear that a flip-flop
will be inferred, and (ii) there will not be a simulation race:

always @(posedge Clock)
begin

Tmp <= ~(IP1 & IP2);
OP1 <= Tmp | IP3;

end

assign OP2 = Tmp;

Comprehensive Verilog, V6.06-22

Module 6: Clocks and Flip-Flops

May 2001

Flip-Flops Quiz 1

Notes:

How many flip-flops will be inferred from this always block?

6-17 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flops Quiz 1

reg OUT;

reg V;

integer I;

always @(posedge CLOCK)

begin

V = 1;

for (I = 0; I < 8; I = I + 1)

V = V & INPUT[I];

OUT <= V;

end flip-flops

How many flip-flops?How many flip-flops?

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-23
May 2001

Flip-Flops Quiz 1 − Solution

Notes:

6-18 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flops Quiz 1 – Solution

reg OUT;

reg V;

integer I;

always @(posedge CLOCK)

begin

V = 1;

for (I = 0; I < 8; I = I + 1)

V = V & INPUT[I];

OUT <= V;

end 1 flip-flop

OUT

Clock

Non-blocking => flip-flopNon-blocking => flip-flop

Blocking: written first => no flip-flopBlocking: written first => no flip-flop

Comprehensive Verilog, V6.06-24

Module 6: Clocks and Flip-Flops

May 2001

Flip-Flops Quiz 2

Notes:

How many flip-flops will be inferred from this always block?

6-19 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flops Quiz 2

flip-flops

How many flip-flops?How many flip-flops?
reg OUT;

reg [7:0] COUNT;

always @(posedge CLOCK)

begin

if (!RESET)

COUNT = 0;

else

COUNT = COUNT + 1;

OUT <= COUNT[7];

end

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-25
May 2001

Flip-Flops Quiz 2 − Solution

Notes:

6-20 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flops Quiz 2 – Solution

9 flip-flops

reg OUT;

reg [7:0] COUNT;

always @(posedge CLOCK)

begin

if (!RESET)

COUNT = 0;

else

COUNT = COUNT + 1;

OUT <= COUNT[7];

end

Blocking: read first => 8 flip-flopsBlocking: read first => 8 flip-flops

Non-blocking => flip-flopNon-blocking => flip-flop

COUNT

OUT

+1

RESET

Comprehensive Verilog, V6.06-26

Module 6: Clocks and Flip-Flops

May 2001

Flip-Flop Merging

Notes:

Following the rules for synthesizing flip-flops, we will get 8 flip-flops for the reg
COUNT, and one flip-flop for the reg OUT.

Note, however, that COUNT[7] and OUT always have the same value, so their
respective flip-flops have their D inputs connected together.

Many synthesis tools will allow two flip-flops to have their D inputs tied, and will
actually give 9 flip-flops in this situation. Other synthesis tools will automatically
merge flip-flops with their D inputs connected, giving just 8 flip-flops.

6-21 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Flip-Flop Merging

COUNT[7]

OUT

With merging

COUNT[7]

OUT

Without merging

always @(posedge CLOCK)

begin

if (!RESET)

COUNT = 0;

else

COUNT = COUNT + 1;

OUT <= COUNT[7];

end

Same D inputSame D input

Module 6: Clocks and Flip-Flops

Comprehensive Verilog, V6.0 6-27
May 2001

No Flip-Flop Optimization

Notes:

In the example above, both Q and QB will become flip-flops! Care must be taken
when writing RTL Verilog in order to avoid unwanted flip-flops. Synthesis is very
simple minded when it comes to flip-flops. You are responsible for deciding how
many flip-flops are needed and how they are organized, then writing the Verilog
accordingly.

6-22 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

No Flip-Flop Optimisation

always @(posedge Clock)

begin

Q <= Data;

QB <= not Data;

end

Data

Clock

Q

QB

?

How would you re-write the code to ensure one flip-flop?How would you re-write the code to ensure one flip-flop?

Different D inputsDifferent D inputs

Comprehensive Verilog, V6.06-28

Module 6: Clocks and Flip-Flops

May 2001

Optimized By Hand

Notes:

To avoid unwanted flip-flops in this situation, only one of Q and QB can be
assigned within the clocked always block. The solution is to take the assignment
to QB outside the always block and make it a continuous assignment, thus
avoiding a flip-flop for QB.

If flip-flops with Q and QB outputs are available in the target technology, the
synthesis tool should be able to use these. Note that the flip-flops in most CPLD
and FPGA devices only have a Q output, so this optimization will not be made.

6-23 • Comprehensive Verilog: Clocks and Flip-Flops Copyright © 2001 Doulos

Optimised By Hand

Data

Clock

Q

QB

Data

Clock

Q

QB

optimized...optimized...

always @(posedge Clock)

Q <= Data;

assign QB = !Q;

Comprehensive Verilog, V6.0 7-1
May 2001

Module 7
Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.07-2

Module 7: Operators, Parameters, Hierarchy

May 2001

Operators, Parameters, and Hierarchy

Notes:

7-2 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Operators, Parameters, Hierarchy

Aim
♦ To consolidate knowledge of Verilog's operators and learn
how to write parameterizable modules

Topics Covered
♦ Operators and expressions
♦ `define and `include
♦ Conditional compilation
♦ Parameters
♦ Hierarchical names

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-3
May 2001

Bitwise and Reduction Operators

Notes:

We have already met some of the bitwise operators, but only with scalar operands.
For vectors, a bitwise operation treats the individual bits of vector operands
separately.

For example, a bitwise and (&) of two vectors produces a vector result, with the
each bit of the result being a logical and of the corresponding bits of the two
operands.

Likewise, a bitwise inversion (~) of a vector simply inverts all the bits of that
vector. In other words it produces the one's complement.

7-3 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Bitwise and Reduction Operators

&

|

^

~

Bitwise and / reduction and

Bitwise or / reduction or

Bitwise xor / reduction xor

Bitwise not

4'b0101 & 4'b1100 4'b0100

4'b0101 | 4'b1100 4'b1101

4'b0101 ^ 4'b1100 4'b1001

&4'b0101 1'b0

|4'b0101 1'b1

^4'b0101 1'b0

~4'b1100 4'b0011

For example:

Ones complementOnes complement

ParityParity

Comprehensive Verilog, V6.07-4

Module 7: Operators, Parameters, Hierarchy

May 2001

Reduction operators

Confusingly, &, | and ^ can also be used as unary reduction operators. A reduction
operator takes a single operand that is a vector and produces a one bit result. For
example, the reduction and (&) ands together the bits of the vector. The result is
always 1'b0, unless all the bits are '1'.

The only really useful reduction operator is ^, which generates a parity bit.

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-5
May 2001

Logical Operators

Notes:

In contrast to the bitwise operators, the logical operators treat their operands as
logical (Boolean) quantities. A scalar or vector is considered to be TRUE when it
is not zero, and FALSE when it is zero. Xs and Zs are considered to be unknown
(neither TRUE nor FALSE).

An expression that uses logical operators evaluates to 1'b1 (TRUE), 1'b0 (FALSE)
or 1'bX (unknown). When an unknown value is tested, in an if statement for
example, it is considered to be FALSE.

The not operator (!) is useful for testing to see whether or not an expression is
zero.

7-4 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Logical Operators

&& Logical and

|| Logical or

! Logical not

assign f = !((a && b) || (c && d));assign f = !((a && b) || (c && d));

if (Expression)
$display("Expression is non-zero");

else if (!Expression)
$display("Expression is zero");

else
$display("Expression is unknown");

if (Expression)
$display("Expression is non-zero");

else if (!Expression)
$display("Expression is zero");

else
$display("Expression is unknown");

Non-zero values are considered TRUE in logical expressions:

4'b0101 && 4'b1100 1'b1

!4'b1100 1'b0

!4'b0000 1'b1

4'b0XX0 1'b0

4'b01X0 1'b1

if (p == q && r == s)
...

if (p == q && r == s)
...

Comprehensive Verilog, V6.07-6

Module 7: Operators, Parameters, Hierarchy

May 2001

Note that for single-bit quantities, &&, || and ! are equivalent to &, | and ~
respectively.

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-7
May 2001

Comparison Operators

Notes:

There are two sorts of equality operator in Verilog. == and != are logical equality
operators, which compare the values of two vectors. The result of such a
comparison is TRUE (if the values are the same), FALSE (if they are not) or
unknown (if either vector contains an X or Z).

=== and !== are the case equality operators. Two vectors are equal if and only if
their bits are identical, including Xs and Zs.

== gives the same result as ===, and != as !== if the vectors being compared do
not contain Xs or Zs. Otherwise == and != may give unknown results, whereas
=== and !== give a definite result.

7-5 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Comparison Operators

==

!=

===

!==

Logical Equality

Logical Inequality

Case Equality

Case Inequality

Logical Equality
== 0 1 X Z
0 1 0 X X
1 0 1 X X
X X X X X
Z X X X X

Case Equality
=== 0 1 X Z
0 1 0 0 0
1 0 1 0 0
X 0 0 1 0
Z 0 0 0 1

if (A == 1'bx) // Always false!
F = 1'bx; // Never executed!

if (A == 1'bx) // Always false!
F = 1'bx; // Never executed!

Use to describe logicUse to describe logic

Use in test fixturesUse in test fixtures

Comprehensive Verilog, V6.07-8

Module 7: Operators, Parameters, Hierarchy

May 2001

Concatenation

Notes:

The concatenation operator {} is used to join together two vectors (or single bit
values) to form a single longer vector. The two concatenated vectors are placed
end-to-end, as shown opposite in the assignment F = {A, B};, where A is copied
into the leftmost 8 bits of F, and B is copied into the rightmost 8 bits of F.

Note that it is an error to include an unsized integer value in a concatenation.

The second example shows concatenation being used on the left-hand side of a
continuous assignment. The wire COUT will receive the carry bit generated from
the sum in the expression on the right-hand side of the assignment. This is because
the width of the addition (A + B + CIN) is taken from the width of the left-hand
side of the assignment ({COUT, SUM}).

7-6 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Concatenation

♦ Concatention operator “{ }” …

♦ On left-hand side of assignment

reg [7:0] A, B;
reg [15:0] F;
…
F = {A, B};

reg [7:0] A, B;
reg [15:0] F;
…
F = {A, B};

wire COUT, CIN;
wire [15:0] A, B, SUM;
assign {COUT, SUM} = A + B + CIN;

wire COUT, CIN;
wire [15:0] A, B, SUM;
assign {COUT, SUM} = A + B + CIN;

7 6 5 4 3 2 01 7 6 5 4 3 2 01

15 14 13 12 11 10 89 7 6 5 4 3 2 01

{A }

F

,B

{A,0} is illegal{A,0} is illegal

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-9
May 2001

Replication

Notes:

The replication operator is an extension of the concatenation operator. It also uses
curly brackets - two sets, in fact. The inner concatenation is repeated by the
number of times given after the first curly bracket.

Note that the innermost curly brackets do enclose a concatenation: expressions
such as {10{A,B}} are legal.

The example in the bottom half of the slide shows how to describe the sign
extension of an eight bit reg to sixteen bits. Sign extension ensures that the two's
complement value of the smaller reg is maintained. Explicit sign extension is
often required in Verilog models that use two's complement (signed) values. Note

7-7 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Replication

{N{A}} Replication

{64{1'b1}}{64{1'b1}}

word = { {8{byte[7]}}, byte };word = { {8{byte[7]}}, byte };

015

07

..

Sign extensionSign extension

ReplicationReplication

byte

word

ConcatenationConcatenation

{I+J{A}}{I+J{A}} {32{A,B}}{32{A,B}}

reg [7:0] byte;
reg [15:0] word;
reg [7:0] byte;
reg [15:0] word;

Comprehensive Verilog, V6.07-10

Module 7: Operators, Parameters, Hierarchy

May 2001

that the expression being assigned to word is a concatenation of a replication
({8{byte[7]}} with a simple expression (byte).

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-11
May 2001

Shift Registers

Notes:

Shift registers can be described using concatenation, as shown. The right-hand
side of the assignment is an eight-bit vector, with SR[6] as the MSB and SerialIn
as the LSB. This is the new value for the left-hand side of the assignment (SR).
Thus SR[6] is copied to SR[7], SR[5] to SR[6] etc. and SerialIn to SR[0].

7-8 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Shift Registers

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

SR after

SR before

reg [7:0] SR;

always @(posedge Clock or posedge Reset)
if (Reset)

SR <= 8'b0;
else

SR <= {SR[6:0],SerialIn};

reg [7:0] SR;

always @(posedge Clock or posedge Reset)
if (Reset)
SR <= 8'b0;

else
SR <= {SR[6:0],SerialIn};

SerialInSerialIn

Shift register using concatenation

Comprehensive Verilog, V6.07-12

Module 7: Operators, Parameters, Hierarchy

May 2001

Shift Operators

Notes:

Verilog has two shift operators. << shifts to the left and >> to the right. The left
operand is shifted by the number of bits in the right operand. Any vacated bits are
filled with zeroes.

Note that for this example, the shift can be described in one statement using the
concatenation operator, but the shift operator requires two statements to be used.

7-9 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Shift Operators

<<

>>

Left Shift

Right Shift

always @(posedge Clock or posedge
Reset)
if (Reset)

SR <= 8'b0;
else

begin
SR <= SR << 1;
SR[0] <= SerialIn;

end

always @(posedge Clock or posedge
Reset)

if (Reset)
SR <= 8'b0;

else
begin

SR <= SR << 1;
SR[0] <= SerialIn;

end

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

SR after

SR before

SerialInSerialIn

Shift register using shift operator

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-13
May 2001

‘define and ‘include

Notes:

Compiler directives are not, strictly speaking, part of the Verilog language, but are
instructions to the Verilog compiler. A compiler directive is preceded by the
backwards apostrophe ("back-tick"), or grave accent character (`). Each compiler
directive starts with the character ` and is on a line by itself. Be careful to
distinguish this from the normal apostrophe or inverted comma ('), which is used
in numbers such as 8'bx

A compiler directive applies throughout a Verilog source file (and in some tools,
even across source file boundaries) until overruled by another compiler directive.

7-10 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

`define and `include

`define PERIOD #10

initial
begin

`PERIOD A = 4'b1110;
`PERIOD SEL = 2'b01;
`PERIOD B = 4'b1101;
`PERIOD SEL = 2'b10;

end

`define PERIOD #10

initial
begin

`PERIOD A = 4'b1110;
`PERIOD SEL = 2'b01;
`PERIOD B = 4'b1101;
`PERIOD SEL = 2'b10;

end

module M;

`include "my_definitions.v"

...

module M;

`include "my_definitions.v"

...

Text substitution

File inclusion

No semicolon!No semicolon!
DefinitionDefinition

UseUse

Comprehensive Verilog, V6.07-14

Module 7: Operators, Parameters, Hierarchy

May 2001

`define

`define declares a text macro. A text macro is simply a string of characters. When
the macro name, which also must be preceded by the apostrophe (`), appears in the
Verilog source code, the compiler substitutes the corresponding macro string.

Note that there is no semicolon (;) at the end of the macro string. If one were
included it would be considered part of the string, and substituted accordingly!

When used appropriately, `define can be used to make the Verilog code easier to
read and maintain. It is also used in conjunction with the `ifdef directive, which is
described on the next slide.

`include

`include is followed by a file name in double quotes. The compiler simply
substitutes the contents of the file in place of the `include statement. It is as if the
contents of the file had been inserted using a text editor.

One common use of `include is to enable commonly used definitions to be made
once, and then included and used as required.

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-15
May 2001

‘ifdef

Notes:

`ifdef

`ifdef enables conditional compilation, where certain lines of Verilog source code
are only compiled if certain conditions are met.

One application of `ifdef is to enable diagnostic code to be included or excluded
from a particular simulation.

`ifdef is followed by the name of a text macro. (Note that when used like this as
part of an `ifdef statement, the back-tick is not required before the macro name.) If
the macro has been defined, the following statements up to the next `endif
directive are compiled, irrespective of the actual value of the macro.

7-11 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

`ifdef DEBUG

$display("Debug: vec = %h", vec);

`endif

`ifdef DEBUG

$display("Debug: vec = %h", vec);

`endif

verilog +define+ASSIGN ...verilog +define+ASSIGN ...
Depends on the toolDepends on the tool

`ifdef ASSIGN

assign f = a & b;

`else

AND_GATE G (f, a, b);

`endif

`ifdef ASSIGN

assign f = a & b;

`else

AND_GATE G (f, a, b);

`endif

`define DEBUG`define DEBUG

`ifdef

♦ Macro defined in the code

♦ Macro defined in Verilog command line

No macro text!No macro text!

Can nest `ifdefCan nest `ifdef

Comprehensive Verilog, V6.07-16

Module 7: Operators, Parameters, Hierarchy

May 2001

`else

When an `else directive is included, the source lines between `ifdef and `else are
compiled if the macro is defined, otherwise the lines between `else and `endif are
compiled.

`ifdef may be nested.

A `define macro can be defined and (optionally) given a value on the Verilog
command line as shown. The details depend on which Verilog simulator you are
using. The example opposite is for Cadence's Verilog-XL simulator.

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-17
May 2001

Parameters

Notes:

Parameters are constants and are declared in modules. A parameter maintains its
value throughout simulation. Parameters can be used in declarations and
expressions in the place of literal constants.

Parameters and `define macros are often interchangeable. Parameters look neater
and are local to a module. `define macros can be global. Parameter values can be
overwritten as described later in this section.

7-12 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Parameters

module M;

parameter Width = 8;

parameter Add = 8'b00111100,

Sub = 8'b00010000,

Load = 8'b01010000,

Store = 8'b11010000,

Jump = 8'b00101111,

Halt = 8'b11111111;

parameter error_message = "Gone wrong again";

...

Parameters are declared in a moduleParameters are declared in a module

Constant valuesConstant values

Any Verilog “type”Any Verilog “type”

Comprehensive Verilog, V6.07-18

Module 7: Operators, Parameters, Hierarchy

May 2001

Using Parameters

Notes:

Here are some examples where parameters are used in place of literal values.

It is good practice to give names to any meaningful literal values (sometimes
called "magic numbers") in a design. This makes the Verilog code easier to
understand and to maintain - if the value changes it only needs to be edited in one
place. Both parameters and `define macros can be used in this way.

Note the use of replication to assign a high impedance value to BusWire. A
parameter name cannot be used as the size of a number; instead, use replication, as
shown.

7-13 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Using Parameters

♦ Sizes of regs and wires

♦ “Magic Numbers”

♦ Size of Numbers

reg [Width-1:0] Bus;

wire [Width-1:0] BusWire;

reg [Width-1:0] Bus;

wire [Width-1:0] BusWire;

always @(Bus)

if (Bus == Halt)

$display("%s", error_message);

always @(Bus)

if (Bus == Halt)

$display("%s", error_message);

assign BusWire = Enable ? Bus : {Width{1'bz}};assign BusWire = Enable ? Bus : {Width{1'bz}};

Width'bz is illegalWidth'bz is illegal

ReplicationReplication

Not: Bus == 8'b11111111Not: Bus == 8'b11111111

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-19
May 2001

Using Parameters in Other Modules

Notes:

Modules are normally used to represent blocks of hardware or test fixtures.
However, modules can be used simply to group together a set of related
definitions (e.g. parameters) which can then be referenced using hierarchical
names. The hierarchical names are formed by preceding the names of the
parameters with the name of the module containing the parameters (Codes) and a
full stop. For example, Codes. Add refers to the parameter Add in the module
Codes. This module is then simulated alongside the rest of the design: it does not
need to be instanced anywhere. See later in this section for more details.

Note that synthesis tools do not generally support hierarchical names. The
alternative approach is to use the `include directive as shown next.

7-14 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Using Parameters in Other Modules

♦ Parameters in a separate module

module Codes;
parameter Add = 8'b00111100,

Sub = 8'b00010000,
Load = 8'b01010000,
Store = 8'b11010000,
Jump = 8'b00101111,
Halt = 8'b11111111;

endmodule

module Codes;
parameter Add = 8'b00111100,

Sub = 8'b00010000,
Load = 8'b01010000,
Store = 8'b11010000,
Jump = 8'b00101111,
Halt = 8'b11111111;

endmodule

module CPU;
...
case (Opcode)
Codes.Add: ...
Codes.Sub: ...

endcase
endmodule

module CPU;
...
case (Opcode)
Codes.Add: ...
Codes.Sub: ...

endcase
endmodule

Hierarchical namesHierarchical names

module Codes is not
instanced in the design!
module Codes is not
instanced in the design!

Comprehensive Verilog, V6.07-20

Module 7: Operators, Parameters, Hierarchy

May 2001

Parameters in a Separate File

Notes:

Parameter definitions can be placed in a separate file and included where required
using the `include directive.

Note that (unlike #define in C) `include statements may be included both outside
and inside modules.

7-15 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Parameters in a Separate File

♦ Parameters in a `include file

module CPU;
`include "codes.v"
...
case (Opcode)
Add: ...
Sub: ...

endcase
endmodule

module CPU;
`include "codes.v"
...
case (Opcode)
Add: ...
Sub: ...

endcase
endmodule

parameter Add = 8'b00111100,
Sub = 8'b00010000,
Load = 8'b01010000,
Store = 8'b11010000,
Jump = 8'b00101111,
Halt = 8'b11111111;

parameter Add = 8'b00111100,
Sub = 8'b00010000,
Load = 8'b01010000,
Store = 8'b11010000,
Jump = 8'b00101111,
Halt = 8'b11111111;

codes.v

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-21
May 2001

Parameterized Module

Notes:

This module uses parameters for the widths of the input, A, and the output, F, of a
module Decode. The parameter OutWidth is derived from the value of Width and
is declared after the parameters Width and polarity for reasons that will become
clear in the slide following this one. There is also a parameter that defines the
polarity of the decoder: if Polarity is 1, the module describes a one-hot decoder
(one bit is set to 1 and the others are all zero); if Polarity is 0, a one-cold decoder
is being described.

Note the use of replication to assign all the bits of F to 1 when Polarity is 0.

7-16 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Parameterized Module

module Decode (A, F);
parameter Width = 8,

Polarity = 1,
OutWidth = 1 << Width;

input [Width-1:0] A;
output [OutWidth-1:0] F;
reg [OutWidth-1:0] F;

always @(A)
begin
F = Polarity ? 0 : {OutWidth{1'b1}};
F[A] = Polarity;

end

endmodule

Trick to do 2WidthTrick to do 2Width

Comprehensive Verilog, V6.07-22

Module 7: Operators, Parameters, Hierarchy

May 2001

Using parameters in this way makes it easy to modify the details of the module -
you simply change the values of the parameters. This can be done with a text
editor, or as described on the next slide.

Another point to notice here is that although Verilog does not have an
exponentiation ("power of") operator, powers of 2 can be described using the left
shift operator as shown.

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-23
May 2001

Overriding Parameters

Notes:

When a module that contains parameters is instanced, the parameters' values can
be overridden using the parameter override (#).

In the example shown above #(4, 0) means that for the instance D1, Width (the
first parameter declared in the module Decode) will be given the value 4 instead
of 1. The second parameter, Polarity, will be given the value 0. Other instances of
Decode are not affected.

Be careful not to override the values of derived parameters such as OutWidth: the
instanced module may not work correctly! This explains why derived parameters
should be declared after those that may be overridden.

7-17 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Overriding Parameters

module Decode (A, F);
parameter Width = 8,

Polarity = 1,
OutWidth = 1 << Width;

...
endmodule

module Decode (A, F);
parameter Width = 8,

Polarity = 1,
OutWidth = 1 << Width;

...
endmodule

module Top (A4, A5, F16, F32);

input [3:0] A4;
input [4:0] A5;
output [15:0] F16;
output [31:0] F32;

Decode #(4, 0) D1 (A4, F16);

Decode #(5) D2 (A5, F32);

endmodule

module Top (A4, A5, F16, F32);

input [3:0] A4;
input [4:0] A5;
output [15:0] F16;
output [31:0] F32;

Decode #(4, 0) D1 (A4, F16);

Decode #(5) D2 (A5, F32);

endmodule

Default
values
Default
values

Width = 4, Polarity = 0
(OutWidth = 16)

Width = 4, Polarity = 0
(OutWidth = 16)

Width = 5
(Polarity = 1, OutWidth = 32)

Width = 5
(Polarity = 1, OutWidth = 32)

Polarity = 0

A4

D1

4 16
F16Decode

Polarity = 1

A5

D2

5 32
F32Decode

Comprehensive Verilog, V6.07-24

Module 7: Operators, Parameters, Hierarchy

May 2001

Named mapping (which can be used when connecting wires and regs to the ports
of a module instance) is not allowed when overriding parameters.

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-25
May 2001

Defparam

Notes:

defparam

Parameters may also be overridden using defparam. Defparam statements usually
use the hierarchical names of parameters.

7-18 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Defparam

module Top (A4, A5, F16, F32);
input [3:0] A4; input [4:0] A5;
output [15:0] F16; output [31:0] F32;

// Decode #(4, 0) D1 (A4, F16);
// Decode #(5) D2 (A5, F32);

Decode D1 (A4, F16);
Decode D2 (A5, F32);

endmodule

module Top (A4, A5, F16, F32);
input [3:0] A4; input [4:0] A5;
output [15:0] F16; output [31:0] F32;

// Decode #(4, 0) D1 (A4, F16);
// Decode #(5) D2 (A5, F32);

Decode D1 (A4, F16);
Decode D2 (A5, F32);

endmodule

module Overrides;

defparam Top.D1.Width = 4,
Top.D1.Polarity = 0,
Top.D2.Width = 5;

endmodule

module Overrides;

defparam Top.D1.Width = 4,
Top.D1.Polarity = 0,
Top.D2.Width = 5;

endmodule

Hierarchical namesHierarchical names

Comprehensive Verilog, V6.07-26

Module 7: Operators, Parameters, Hierarchy

May 2001

Hierarchical Names

Notes:

We have already seen that parameters can sometimes be referenced using a
hierarchical name. In fact, any Verilog item that has a name can be referenced
from anywhere in the module hierarchy using a hierarchical name! This makes it
possible to "burgle" Verilog modules and named blocks, i.e. read and write items
declared within a block from outside without using ports or arguments. This is
very bad practice except in test fixtures, where it is very useful!

The full hierarchical name of any item starts with the name of a top level module,
then contains module instance names and block names down through the
hierarchy.

7-19 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Hierarchical Names

module Test;
wire W;
Top T ();

endmodule

module Top;
wire W;
Block B1 ();
Block B2 ();

endmodule

module Block;
parameter P = 0;

endmodule

module Annotate;
defparam Test.T.B1.P = 2,

Test.T.B2.P = 3;
endmodule

module Test;
wire W;
Top T ();

endmodule

module Top;
wire W;
Block B1 ();
Block B2 ();

endmodule

module Block;
parameter P = 0;

endmodule

module Annotate;
defparam Test.T.B1.P = 2,

Test.T.B2.P = 3;
endmodule

TestTest

BlockBlock BlockBlock

B1 B2

T

AnnotateAnnotate

TopTop

Parallel hierarchiesParallel hierarchiesT.B1.P
T.W

Test.T.B1.P

Module 7: Operators, Parameters, Hierarchy

Comprehensive Verilog, V6.0 7-27
May 2001

A hierarchical name can also be formed starting with the instance name of a
module or the name of a named block. For example, a $display statement in the
test fixture could reference items in the hierarchy of the design being simulated
using such hierarchical names.

A Verilog simulation can have more than one top level module! The two
hierarchies can communicate using hierarchical names. Here, the names in the
module Annotate refer to parameters in the design whose top-level module is Test.

Comprehensive Verilog, V6.07-28

Module 7: Operators, Parameters, Hierarchy

May 2001

Upwards Name References

Notes:

The hierarchical names we have been looking are all full or downwards
references: these hierarchical names start at the top-level module or with a module
instance name or block name in the module in which the hierarchical name is
used.

Verilog also supports upwards name referencing. This means that a module can
reference a module or named block higher up in the hierarchy, using either an
instance name of the module or its module name, or a block name.

7-20 • Comprehensive Verilog: Operators, Parameters, Hierarchy Copyright © 2001 Doulos

Upwards Name References

module Test;
wire W;
Top T ();
initial
begin : D
reg R;

end
endmodule

module Top;
wire W;
Block B1 ();
Block B2 ();

endmodule

module Block;
parameter P = 0;

endmodule

module Test;
wire W;
Top T ();
initial
begin : D
reg R;

end
endmodule

module Top;
wire W;
Block B1 ();
Block B2 ();

endmodule

module Block;
parameter P = 0;

endmodule

TestTest

BlockBlock BlockBlock

B1 B2

T

TopTop

Top.W or T.W

D.R

module namemodule name instance nameinstance name

D

named begin-endnamed begin-end

Comprehensive Verilog, V6.0 8-1
May 2001

Module 8
FSM Synthesis

Comprehensive Verilog, V6.08-2

Module 8: FSM Synthesis

May 2001

FSM Synthesis

Notes:

8-2 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

FSM Synthesis

Aim
♦ To understand how to write and synthesize finite state
machines using Verilog

Topics Covered
♦ Moore and Mealy machines
♦ State transition diagrams
♦ Explicit state machines
♦ Multiple always style
♦ State encoding
♦ Unreachable states
♦ One-hot using case

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-3
May 2001

Finite State Machines

Notes:

A finite state machine is a very useful abstraction for digital circuit design. As the
name suggests, a finite state machine is a digital logic circuit with a finite number
of internal states. The FSM uses the values of its inputs and its current state to
determine the values of its outputs and its next state. We will consider only
synchronous state machines, where the state machine changes state on the active
edge of the clock.

The hardware architecture of a finite state machine consists of a state register,
combinational logic to calculate the next state, and combinational logic to
calculate the outputs.

8-3 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

Finite State Machines

Next-state
logic

Output
logic

Clock

Inputs
Outputs

State registerState register

Mealy outputs
depend on inputs
Mealy outputs
depend on inputs

Moore outputs
depend only on state
Moore outputs

depend only on state

Comprehensive Verilog, V6.08-4

Module 8: FSM Synthesis

May 2001

Moore outputs

Moore outputs depend only on the current state of the machine, such that the
outputs only change value when the state machine changes state.

Mealy outputs

Mealy outputs depend on the current values of the inputs as well as the current
state, such that a change in the inputs can cause the outputs to change after just a
combinational delay, without having to wait for the next state transition.

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-5
May 2001

State Transition Diagrams

Notes:

A finite state machine can be conveniently represented using a state transition
diagram, as shown here. Each bubble on the diagram represents a different
internal state of the machine. The arrows connecting the bubbles represent state
transitions, and the annotations on some of the arrows (e.g. Start = 1) are the input
conditions under which that particular state transition will occur. Each bubble
contains a symbolic name for that state (e.g. Idle), and the output values in that
state. These are Moore outputs, because the output value is a function only of
which state the machine is in. Mealy outputs would be shown as annotations on
the transition arrows.

State transition diagrams often take advantage of notational shortcuts. For
example, transitions that start from a dot rather than from another state (e.g. Reset

8-4 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

State Transition Diagrams

IdleIdle Go1
F = 1
Go1
F = 1

Go2
G = 1
Go2
G = 1

Reset = 1

Start = 1

Start = 0

Defaults

F = 0
G = 0

Inputs

Reset
Start

Outputs

F
G

Comprehensive Verilog, V6.08-6

Module 8: FSM Synthesis

May 2001

= 1) are global transitions. These take priority over other input conditions, and
cause the state machine to jump directly to the given state from any other state.
This avoids cluttering the diagram with reset transitions from every state.

As another example of a notational shortcut, the outputs on this diagram are
assumed to have a default value of zero. The diagram only shows the values of the
outputs explicitly when they are non-zero.

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-7
May 2001

Explicit State Machine Description

Notes:

There are many ways to describe a finite state machine in Verilog. The most
common approach is to use an always statement containing a case statement. The
state of the machine is stored in a state register, and the possible states are
represented with parameter values.

Initialization

Finite state machines must be initialized by means of an explicit reset signal.
Otherwise, there is no reliable way to get the Verilog and gate level representation
of the FSM into the same known state, and thus no way to verify their
equivalence.

8-5 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10;

reg [1:0] State;
...
always @(posedge Clock or posedge Reset)
if (Reset)
begin
State <= Idle;
F <= 0;
G <= 0;

end
else
case (State)
Idle : if (Start)

begin
State <= Go1;
F <= 1;

end
Go1 : begin

State <= Go2;
F <= 0;
G <= 1;

end
Go2 : begin

State <= Idle;
G <= '0';

end
endcase

How many flip-flops?How many flip-flops?

FSM should have a resetFSM should have a reset

Explicit State Machine Description

Comprehensive Verilog, V6.08-8

Module 8: FSM Synthesis

May 2001

State Machine Architecture

Notes:

The preceding description of a finite state machine consists of an always
statement, synchronized on a clock edge, and assigning the Verilog regs
representing the state vector (State) and the outputs (F and G). Synthesis will
generate flip-flops for each of these regs, in order to ensure that both the state
transitions and the outputs are synchronized to the clock. However, the flip-flops
on the outputs may well be unwanted! A textbook Moore machine consists just of
registers to store the state vector, and combinational logic to decode the next state
and outputs from the current state. In order to eliminate the unwanted flip-flops,
we must re-write the Verilog.

8-6 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

State Machine Architecture

Preceding alwaysPreceding always

Textbook Moore machineTextbook Moore machine

Next-state
logic

Output
logic

Inputs
Outputs

Inputs
Outputs

C-logic
State

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-9
May 2001

Separate Output Decoding

Notes:

In order to eliminate unwanted flip-flops, we must split the description into at
least two always statements. There are many different ways of splitting up the
description into multiple always statements, and two of the most common styles
are shown above and on the next page.

The code above shows the previous state machine coded using two always
statements, one describing the state vector and state transitions, the other
describing the output decoding logic. Since the output always statement is now
purely combinational, the extra flip-flops are eliminated.

8-7 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

Separate Output Decoding

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10;

reg [1:0] State;

...

always @(posedge Clock or posedge Reset)
if (Reset)

State <= Idle;
else

case (State)
Idle : if (Start)

State <= Go1;
Go1 : State <= Go2;
Go2 : State <= Idle;

endcase

always @(State)
begin
F = 0;
G = 0;
if (State == Go1)

F = 1;
else if (State == Go2)

G = 1;
end

Comprehensive Verilog, V6.08-10

Module 8: FSM Synthesis

May 2001

Separating Registers from C-logic

Notes:

Another common style for describing state machines is to separate the registers
from the combinational logic. The example shows the same state machine with
one always statement describing the state registers, and the second one describing
the next state logic and the output decoding logic.

An additional reg, NextState, is needed so that the combinational always
statement can communicate with the clocked always statement. As NextState is a
combinational function of State and Start, it must be completely assigned in the
always block (otherwise latches will be inferred). The assignment

8-8 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

Separating Registers from C-logic

always @(State or Start)
begin
F = 0;
G = 0;
NextState = State;
case (State)

Idle : if (Start)
NextState = Go1;

Go1 : begin
F = 1;
NextState = Go2;

end
Go2 : begin

G = 1;
NextState = Idle;

end
endcase

end

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10;

reg [1:0] State, NextState;

...

always @(posedge Clock or
posedge Reset)

if (Reset)
State <= Idle;

else
State <= NextState;

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-11
May 2001

NextState = State ensures that no latches will be inferred. Note that this statement
does not affect the simulation: it is only required because of the way synthesis
tools interpret the always block.

A possible advantage over the "separate output decoding" style is that any
commonality between the next state and output decoding logic need not be
duplicated in two always statements, making the code shorter and the optimizer’s
job easier.

A possible disadvantage over the "separate output decoding" style is that
simulation will be less efficient if the next state logic depends on the inputs
(which is not the case opposite), because additional executions of the
combinational always statement would occur whenever an input changed.

Both styles of description result in correct behavior and correct synthesis, and
both styles have their enthusiastic followers! Which to chose is often a matter of
personal taste.

Comprehensive Verilog, V6.08-12

Module 8: FSM Synthesis

May 2001

No Output Decoding

Notes:

Sometimes we want to eliminate the output decoding logic altogether from the
design of the finite state machine, by making the state vector encoding for each
state equivalent to the output values for that state. To code this up in Verilog, you
need to work out an appropriate encoding and declare the state parameters
accordingly. Finally, the bits of the state vector are copied to the outputs.

8-9 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

No Output Decoding

parameter Idle = 3'b100,
Go1 = 3'b010,
Go2 = 3'b001;

reg [2:0] State;
...
always @(posedge Clock or posedge Reset)

if (Reset)
State <= Idle;

else
case (State)

Idle : if (Start)
State <= Go1;

Go1 : State <= Go2;
default : State <= Idle;

endcase

assign F = State[1];
assign G = State[0];

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-13
May 2001

One-Hot Using Case

Notes:

A one-hot state encoding is often a good choice for FSMs that are being
implemented in FPGAs. This is because one-hot encoding suits the standard
FPGA architecture.

The previous slide does in fact use a one-hot encoding, but the synthesis tool will
not realize this fact and will fully decode the state flip-flop values to determine
what the state is.

In the example here, the parameters Idle, Go1 and Go2 are no longer the flip-flop
values for the states, but the position of the flip-flop for the corresponding state in
the state flip-flops. For example, in the Idle state, State[Idle] will be 1'b1 and
State[Go1] and State[Go2] will both be 1'b0.

8-10 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

One-Hot Using Case

parameter Idle = 0,
Go1 = 1,
Go2 = 2;

reg [2:0] State;

always @(posedge Clock or posedge Reset)
if (Reset)
begin
State <= 3'b000;
State[Idle] <= 1'b1;

end
else
begin
State <= 3'b000;
case (1'b1) // synopsys parallel_case

State[Idle] : if (Start)
State[Go1] <= 1'b1;

else
State[Idle] <= 1'b1;

State[Go1] : State[Go2] <= 1'b1;
State[Go2] : State[Idle] <= 1'b1;

endcase
end

always @(State)
begin
F = State[Go1];
G = State[Go2];

end

“Manual output decoding”“Manual output decoding”

Comprehensive Verilog, V6.08-14

Module 8: FSM Synthesis

May 2001

The example uses a case statement with a constant case expression (1'b1) and
variable case values (the bits of State). The parallel_case directive tells the
synthesis tool that only one case value (State[Idle], State[Go1] or State[Go2])
matches the case expression (1'b1) i.e. the encoding is one-hot.

Note that the outputs are decoded manually. The following code would produce
inefficient logic, as the synthesis tool would not assume a one-hot encoding.

always @(State)
begin

F = 0;
G = 0;
if (State == Go1)

F = 1;
else if (State == Go2)

G = 1;
end

However, another case statement with a parallel_case directive could be used,
similar to the one in the state logic always block:

always @(State)
begin

F = 0;
G = 0;
case (1'b1) // synopsys parallel_case

State[Go1] : F = 1;
State[Go2] : G = 1;

endcase
end

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-15
May 2001

State Encoding

Notes:

Usually, a synthesis tool will encode each state using the values of the parameters
corresponding to the state names.

Some synthesis tools recognize that a state machine is being described, and
automatically modify the encodings. Other tools modify the encodings if certain
synthesis directives or pragmas are present in the Verilog source code.

The example above shows the syntax required by Synopsys synthesis tools to
enable the tools to change the state encodings. Other tools support a similar
syntax. Please refer to the documentation for your synthesis tool for details.

8-11 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

State Encoding

parameter [2:0] // synopsys enum States
Idle = 3'b100,
Go1 = 3'b010,
Go2 = 3'b001;

reg [2:0] // synopsys enum States
State;

// synopsys state_vector State

parameter [2:0] // synopsys enum States
Idle = 3'b100,
Go1 = 3'b010,
Go2 = 3'b001;

reg [2:0] // synopsys enum States
State;

// synopsys state_vector State

“Illegal” syntax!“Illegal” syntax!

2'b102'b113'b001Go2
2'b002'b013'b010Go1
2'b012'b003'b100Idle

AutomaticGrayCustomState Name

2'b10
2'b01
2'b00
Binary

3'b001
3'b010
3'b100
One Hot

FPGAsFPGAsASICsASICs

“pragmas” or
“synthesis directives”

“pragmas” or
“synthesis directives”

Comprehensive Verilog, V6.08-16

Module 8: FSM Synthesis

May 2001

The new encoding will usually be either binary or one hot, depending on the target
technology. With binary, the first state in the list of parameters becomes binary 0,
the second state binary 1 and so on. With one hot, there is one flip-flop per state,
and only one flip-flop is 1 in each state.

Many synthesis tools also allow the user to choose from a number of standard
encoding methods, such as Gray, One Hot, Adjacency, Random, LFSR and so on.
Many tools also provide an automatic encoding method that chooses the "best"
encoding using various "clever" algorithms. In practice, however, the best results
are often obtained by using a little engineering knowledge, and specifying an
appropriate encoding manually.

(In this example, the directive // synopsys enum States tells the synthesis tool that
the parameters Idle, Go1 and Go2 are to be considered to be members of an enum
type called States. The reg State is then declared to have the type States. This
means that it may only take one of the values Idle, Go1 and Go2 - you are not
allowed to assign numerical values, only these parameter names. The other
directive - // synopsys state_vector State - tells the tool that State is a state vector
in a state machine. The tool will usually work this out automatically.

Note also that including a vector range in a parameter declaration - which is
required by some synthesis tools in this context - is not allowed according to the
IEEE 1364 Verilog standard. However, most tools do support this extension to the
language.

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-17
May 2001

Unreachable States

Notes:

When a state machine is implemented in hardware, the number of states will be
2N, where N is the number of bits in the state vector. If the state machine has
fewer than 2N states, then the remaining states are unreachable during the normal
logical operation of the state machine. However, the state machine may power up
into one of these unreachable states, or move into such a state due to extraordinary
operating conditions.

Don't care

If the behavior of the state machine in any unreachable state is left unspecified,
then some synthesis tools can optimize the logic to exploit the fact that the
designer does not care what happens in such states.

8-12 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

Unreachable States

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10;

reg [1:0] State;

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10;

reg [1:0] State;

case (State)

Idle : ...

Go1 : ...

Go2 : ...

endcase

case (State)

Idle : ...

Go1 : ...

Go2 : ...

endcase

• 3 states

• 2 flip-flops (binary or gray code)

• 4 hardware states

• 1 unreachable state

2'b10Go2
2'b01Go1
2'b00Idle

Binary
Encoding

State
Name

2'b11-

No control over 4th stateNo control over 4th state

Logic may be minimizedLogic may be minimized

Comprehensive Verilog, V6.08-18

Module 8: FSM Synthesis

May 2001

Controlling Unreachable States

Notes:

On the other hand, if you wish to control the behavior of the state machine in
unreachable states (e.g. by moving directly to the reset state), then you must
specify the behavior explicitly in the Verilog source code by defining all 2N
states. This may mean adding extra parameter names to bring the number of
values up to a power of 2, then adding appropriate code to define the state
transitions.

If you are concerned about defining the behavior in unreachable states, then it is
important not to allow FSM optimization to merge equivalent states. In examples
with several dummy states, if you switch on FSM optimization, then the dummy
states may get merged during optimization, resulting in some well defined states
(one of which is unreachable) and other truly undefined unreachable states!

8-13 • Comprehensive Verilog: FSM Synthesis Copyright © 2001 Doulos

case (State)
Idle : ...
Go1 : ...
Go2 : ...
default : State = Idle

endcase

case (State)
Idle : ...
Go1 : ...
Go2 : ...
default : State = Idle

endcase

Controlling Unreachable States

Explicitly define behavior of hardware in unreachable stateExplicitly define behavior of hardware in unreachable state

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10,
Dummy = 2'b11;

reg [1:0] State;

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10,
Dummy = 2'b11;

reg [1:0] State;

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10;

reg [1:0] State;

parameter Idle = 2'b00,
Go1 = 2'b01,
Go2 = 2'b10;

reg [1:0] State;

EitherEither

Module 8: FSM Synthesis

Comprehensive Verilog, V6.0 8-19
May 2001

Default

Many synthesis tools are influenced by the Verilog code written within the default
part of a case statement, regardless of whether there actually are any other cases!

Comprehensive Verilog, V6.08-20

Module 8: FSM Synthesis

May 2001

Comprehensive Verilog, V6.0 9-1
May 2001

Module 9
Synthesis of Arithmetic and

Counters

Comprehensive Verilog, V6.09-2

Module 9: Synthesis of Arithmetic and Counters

May 2001

Synthesis of Arithmetic and Counters

Notes:

9-2 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Synthesis of Arithmetic and Counters

Aim
♦ To understand the synthesis of arithmetic operations and to
discuss RTL synthesis issues using counters as an example

Topics Covered
♦ Synthesis of arithmetic
♦ Resource sharing
♦ Carry generation and signed arithmetic
♦ Integers vs regs
♦ Counters
♦ Clock Enables
♦ Asynchronous logic

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-3
May 2001

Arithmetic Operators

Notes:

Verilog includes several operators to perform common arithmetic functions.

Generally these operators work as you might expect. Numbers can be added,
subtracted, multiplied, divided and the modulus can be taken. There are a couple
of things to be aware of though.

When a number overflows, the value "rolls round", as in a hardware register.
Therefore adding 1 to 4'b1111 and assigning the result to a 4 bit register gives
4'b0000.

9-3 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Arithmetic Operators

+
-

*
/
%

Add
Subtract

Multiply

Divide
Modulus

reg [3:0] count;

always @(posedge clk)
count <= count + 1;

reg [3:0] count;

always @(posedge clk)
count <= count + 1;

4'b1111 + 1 = 4'b00004'b1111 + 1 = 4'b0000

Comprehensive Verilog, V6.09-4

Module 9: Synthesis of Arithmetic and Counters

May 2001

Secondly, sign extension does not automatically take place when using 'negative'
(i.e. twos complement) numbers. This is explained on the next slide and again
later in this section.

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-5
May 2001

Signed and Unsigned

Notes:

In Verilog, numbers are treated as unsigned quantities, unless the register type
integer is used. (An integer is a signed 32 bit number.)

For example, the following assignment to the reg byte

byte = -1;

gives byte the value 8'b11111111. Although this is the twos complement
representation of -1, the fact that this is a signed number is lost. So when the
assignment to the larger reg word is made:

word = byte;

9-4 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Signed and Unsigned

♦ Integers are signed; regs are unsigned

♦ Sized numbers are signed

♦ Unsized numbers are unsigned

reg [7:0] byte;
reg [15:0] word;

byte = -1; // 8'hFF
word = byte; // 16'h00FF (16'd255)

reg [7:0] byte;
reg [15:0] word;

byte = -1; // 8'hFF
word = byte; // 16'h00FF (16'd255)

No sign extensionNo sign extension

if (-10 < 0) // true

...

if (-10 < 0) // true

...

if (-'d10 < 0) // false

...

if (-'d10 < 0) // false

...

Comprehensive Verilog, V6.09-6

Module 9: Synthesis of Arithmetic and Counters

May 2001

the value of byte is zero extended, and word becomes 16'b0000000011111111,
which is clearly not the twos complement representation of -1.

When using numbers in expressions, unsized integers are treated as being signed,
but sized numbers as unsigned, even if the size is not specified. So -10 is a signed
number, whereas -'d10 is a 32-bit unsigned number, which has a large positive
value.

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-7
May 2001

Synthesizing Arithmetic Operators

Notes:

The table above shows how the Verilog arithmetic and comparison operators are
synthesized.

The only generally synthesizable operators are add (+), subtract (-) and
comparison (= != < <= > >=). Some synthesis tools will fully handle
multiplication, generating a combinational multiplier. The operators / and % are
not synthesizable in general. However, they can be synthesized when the operands
are constant, or when used to represent mask and shift operations. This happens
when the appropriate operand is a static power of 2 (e.g. A * 2, A / 4, N % 2).
Although some synthesis tools might be able to synthesis the case equality
operators (=== and !==), these are not recommended - use ordinary equality
instead.

9-5 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Synthesizing Arithmetic Operators

same as non-blocking
assignment

not equal

A modulo B

Tool dependent

Constants or powers of 2 only

OK for synthesis

OK for synthesis

e.g. A / 4 2**N

Tool dependent

>=

>

<=

<

!==

===

%

/

+

-

*

!=

==

“case” equality

OK for synthesis

Comprehensive Verilog, V6.09-8

Module 9: Synthesis of Arithmetic and Counters

May 2001

You can, and should, use parentheses () to determine the order that the operators
within an expression are evaluated.

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-9
May 2001

Arithmetic Operators

Notes:

In practice, what happens to arithmetic operators is dependent on the synthesis
tool.

Some tools will map the operators to discrete gates, others will make use of
macro-cells optimized for the target technology. Some tools create hierarchical
blocks by default, others create flat structures. Most RTL synthesis tools work by
having a library of arithmetic parts built in, represented in a technology
independent format (e.g. boolean equations), which they then map to the target
architecture.

9-6 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Arithmetic Operators

♦ What happens when you write F <= A + B?

or

Hierarchical blockHierarchical block

A

B

F

A + 4'b0101 or -A
map to discrete gates
A + 4'b0101 or -A

map to discrete gates

A

B
F

Discrete
Logic
Gates

Optimised
macro F

A

B

Comprehensive Verilog, V6.09-10

Module 9: Synthesis of Arithmetic and Counters

May 2001

Using Macrocells

Notes:

RTL synthesis tools can either convert the arithmetic operator to Boolean
equations and thence to gates, or else map the operation directly to a macrocell.
The use of optimized macro-cells is crucial for FPGA devices in order to achieve
good performance and utilization.

If your synthesis tool can't map an arithmetic operator to an optimized macro-cell,
you will need to hand instantiate the macro-cell directly in your Verilog code.
(Vendors may supply tools to create Verilog code to copy and paste into your
design.) This may make your code vendor specific.

Some macrocells, for example decoders, cannot be inferred, so technology
specific instantiation is the only option.

9-7 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Using Macrocells

♦ Macrocell inference

♦ Macrocell instantiation

F <= A + B;F <= A + B;

lpm_add_sub adder (

.dataa (A),

.datab (B),

.result (F);

defparam

adder.LPM_WIDTH = 8,

adder.LPM_DIRECTION = "ADD",

adder.ONE_INPUT_IS_CONSTANT = "NO";

lpm_add_sub adder (

.dataa (A),

.datab (B),

.result (F);

defparam

adder.LPM_WIDTH = 8,

adder.LPM_DIRECTION = "ADD",

adder.ONE_INPUT_IS_CONSTANT = "NO";

A

B

F
Optimised
macro

Uses dedicated carry logicUses dedicated carry logic

Altera LPM instanceAltera LPM instance

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-11
May 2001

Choice of Adders

Notes:

An addition operation can be implemented in hardware using one of several
hardware architectures, trading off silicon area for speed. For ASIC design, at one
extreme, a ripple carry adder is the smallest and slowest option, whereas the carry
select adder is the largest and often the fastest. (For FPGAs that include dedicated
carry chains, ripple carry adders are usually the fastest and smallest means to
implement adders up to 32 bits.)

Some ASIC synthesis tools automatically infer the most appropriate architecture
using your design constraints, other ASIC synthesis tools allow you to make the
selection manually. FPGA synthesis tools typically do not give you a choice, since
the adder type is fixed by the macros optimized for the technology.

9-8 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Carry
lookahead

F <= A + B;F <= A + B;

Constraints or switches

Small
slow

Carry
select

Ripple
carry

Big
fast

Optimisation

Choice of Adders

♦ For ASIC synthesis

Comprehensive Verilog, V6.09-12

Module 9: Synthesis of Arithmetic and Counters

May 2001

Arithmetic is not Optimized

Notes:

Synthesis tools typically do not optimize arithmetic structures in most situations.
Thus, you have to be particularly careful when writing any Verilog code that
includes any arithmetic operators.

The reason that synthesis tools have problems with optimizing arithmetic
structures has to do with the way functions are represented internally within the
tool. Most synthesis algorithms represent functions as single level sum-of-
products boolean equations, but with this representation, arithmetic functions have
a huge number of product terms. This representation severely limits the amount of
manipulation and optimization that can be done.

9-9 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

if (A)

S <= S + 1;

if (A)

S <= S + 1;

A
8

S

8
S

Arithmetic Isn’t Optimised

A

S

1

mux

8

8

S

reg [7:0] S;

reg A;

reg [7:0] S;

reg A;

S <= S + A;S <= S + A;
Rewritten to reduce areaRewritten to reduce area

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-13
May 2001

The if statement will be synthesized with an 8 bit incrementer and an 8 bit
multiplexer. With most synthesis tools, no amount of fiddling with constraints and
synthesis settings will significantly alter the architecture. You must re-write the
source code entirely to direct the synthesis tool to the architecture you want, as
shown at the bottom.

Comprehensive Verilog, V6.09-14

Module 9: Synthesis of Arithmetic and Counters

May 2001

Arithmetic Really isn’t Optimized!

Notes:

This example is a classic case of the lack of arithmetic optimization. No matter
what you do by way of setting constraints or manipulating hierarchy, most RTL
synthesis tools will stubbornly refuse to reduce the arithmetic circuit, whereas the
boolean equation is effortlessly minimized to a bit of wire.

9-10 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

assign F = A + B - A - B;assign F = A + B - A - B;

Arithmetic Really Isn’t Optimised!

A

FB

assign F = A & B & !A & !B;assign F = A & B & !A & !B;

F

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-15
May 2001

Arithmetic WYSIWYG

Notes:

Unlike the synthesis of boolean equations, with arithmetic what you see is what
you get! Thus you have to think carefully about the hardware architecture you
want when using arithmetic operators.

For example, if we write A + B > C, then the addition is done before the
comparison, and the delay from A or B to the output is longer than the delay from
C, which is fine if C is on the critical path. If we re-write the equation as

A > C - B, then the delay from A is the shorter, which is better if A is on the
critical path.

9-11 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Arithmetic WYSIWYG

if (A + B > C)if (A + B > C)

C B
8

8

8

A

if (A > C - B)if (A > C - B)

A B
8

8

8

C

Reduced delay
from A

Reduced delay
from A

Can be rewritten as...

+

Comprehensive Verilog, V6.09-16

Module 9: Synthesis of Arithmetic and Counters

May 2001

Resource Sharing

Notes:

Resource sharing is a high level optimization, necessary because of the limited
power of boolean optimization techniques to deal effectively with arithmetic
functions. Resource sharing endeavours to share a single hardware resource (e.g.
an adder) for several different operations, and can do so only if the operations are
executed in exclusive control paths in a case or if statement in the Verilog HDL
source code. In the example opposite, the two "+" operations in the branches of
the if statement can share a single adder, with additional multiplexing necessary
on the inputs.

Most synthesis tools provide a means of manually controlling resource sharing.
This may be done by means of directives in the Verilog HDL source code, or

9-12 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

A B C D

K

Z

A C B D

Z

K

*
>>=<=<

-+

These operators
can share resources

always @(A or B or C or D or K)

if (K)

Z = A + B;

else
Z = C + D;

Resource Sharing

♦ Before resource sharing: ♦ After resource sharing:

"+" in different branches of case or if"+" in different branches of case or if

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-17
May 2001

through a graphical user interface to a schematic representation of the synthesized
design.

Comprehensive Verilog, V6.09-18

Module 9: Synthesis of Arithmetic and Counters

May 2001

Integers

Notes:

integer

An integer in Verilog is a register type that represents 32 bit signed numbers. So
using an integer to infer flip-flops will result in 32 flip-flops being inferred!

Some, but not all, synthesis tools may be able to remove any redundant flip-flops
from the design. Therefore, integers should generally be avoided for synthesis. It
is better to use regs and explicitly define the width (e.g. reg [15:0] R;). The
exception is loop variables, parameters, and vector indexes, where integers may
be used safely without the risk of 32 bit busses.

9-13 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Integers

♦ Type integer synthesises to 32 bits

♦ Integers OK for constants and bit selects

integer I;

always @(posedge Clock)
if (Reset || (I == 255))
I <= 0;

else
I <= I + 1;

wire [7:0] Count = I;

integer I;

always @(posedge Clock)
if (Reset || (I == 255))

I <= 0;
else

I <= I + 1;

wire [7:0] Count = I;

integer I;
parameter Size = 8;
wire [Size-1:0] A;

always @(A)
for (I = 0; I < Size; I = I + 1)
if (A[I])

N = N + 1;

integer I;
parameter Size = 8;
wire [Size-1:0] A;

always @(A)
for (I = 0; I < Size; I = I + 1)

if (A[I])
N = N + 1;

32 flip-flops32 flip-flops

32 bit constant, optimised32 bit constant, optimised

32 bit incrementor32 bit incrementor

8 bit counter8 bit counter

32 bit loop variable, optimised32 bit loop variable, optimised

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-19
May 2001

Vector Arithmetic

Notes:

Vectors in Verilog are treated as unsigned quantities. If the regs in a design are
indeed storing unsigned values, then regs of different widths can be added and
subtracted with no special treatment.

Note in particular, that if the reg on the left hand side of an assignment is big
enough, any carry or overflow bits generated by the expression on the right hand
side are not lost. The same also applies to wires in continuous assignments.

Sometimes, strange things happen, though. In the assignment

TwoBits = { 1'b1 + 1'b1 };

9-14 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Vector Arithmetic

reg [3:0] A;
reg [2:0] B;
reg [4:0] F;

reg [3:0] A;
reg [2:0] B;
reg [4:0] F;

OneBit = 1'b1 + 1'b1;

TwoBits = 1'b1 + 1'b1;

OneBit = 1'b1 + 1'b1;

TwoBits = 1'b1 + 1'b1;

“Carry” bits don’t get lost!

F = A + B;F = A + B;

reg OneBit;
reg [1:0] TwoBits;
reg OneBit;
reg [1:0] TwoBits;

=> 2'b10=> 2'b10

=> 1'b0=> 1'b0

OK for unsigned arithmeticOK for unsigned arithmetic

TwoBits = {1'b1 + 1'b1};TwoBits = {1'b1 + 1'b1};

=> 2'b0 !!=> 2'b0 !!

(... usually)

Comprehensive Verilog, V6.09-20

Module 9: Synthesis of Arithmetic and Counters

May 2001

the concatenation "hides" the size of the target of the assignment (TwoBits),
resulting in the carry bit being lost!

The following assignment:

TwoBits = { 2'b01 + 2'b01 };
does give TwoBits = 2'b10.

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-21
May 2001

Sign Extension

Notes:

Suppose that we are trying to store signed (i.e. twos complement) numbers in regs.
In order to generate the correct result, we must sign extend the operands so that
they are both the same size as the result. This can be done using the concatenation
operator, as shown.

9-15 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Sign Extension

F A B

= +0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

F = {A[3], A} + {B[2], B[2], B};F = {A[3], A} + {B[2], B[2], B};

reg [3:0] A;

reg [2:0] B;

reg [4:0] F;

reg [3:0] A;

reg [2:0] B;

reg [4:0] F;

ConcatenationConcatenation

A, B, F representing signed numbersA, B, F representing signed numbers

Comprehensive Verilog, V6.09-22

Module 9: Synthesis of Arithmetic and Counters

May 2001

Synthesis of Counters

Notes:

A counter can be described in RTL Verilog code by performing the operation +1
on a clock edge, as shown in the example opposite. The + operator will synthesis
to an adder with one of the inputs tied to arithmetic 1, and thus the always
statement will synthesis to a synchronous binary counter with an asynchronous
reset. It is easy to add variations such as a synchronous reset, parallel load, enable,
or up-down counter.

FPGA Synthesis

Many FPGA technology vendors supply macros to allow the efficient
implementation of arithmetic and counter structures. Certain Verilog synthesis
tools will infer a counter macro when the function of the Verilog source code

9-16 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Synthesis of Counters

Counter
macro

Reset
Q

Clock

1

Q

Clock
Reset

Macro

always @(posedge Reset or posedge Clock)
if (Reset)

Q <= 0;
else

Q <= Q + 1;

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-23
May 2001

matches the function of an available macro. Some synthesis tools will infer an
adder macro from the "+1" function, whereas other synthesis tools will not infer
an adder when one of the operands is a constant.

ASIC Synthesis

Most ASIC synthesis tools allow you to direct the synthesis of the "+" operator to
use either a predefined adder component or to expand the operation into boolean
logic gates. When this is done to the synchronous binary counter, we get a
conventional implementation as shown at the bottom. Note the regular carry chain
of AND gates. We can force the synthesis tool to re-implement the logic by setting
a clock constraint. Optimization will re-structure the carry generation to speed up
the logic, at the expense of increased area.

Comprehensive Verilog, V6.09-24

Module 9: Synthesis of Arithmetic and Counters

May 2001

Clock Enables

Notes:

Synthesis tools generally choose synchronous implementation. For example, an
enable on a synchronous counter will be implemented as a synchronous enable,
with the count recirculated when the counter is disabled.

Some synthesis tools, particularly those tuned to synthesis particular FPGA
architectures, will make use of the dedicated clock enables built into the
technology. To exploit such features, the Verilog code must reflect exactly the
behavior of the dedicated hardware. This means making sure that the levels and
the priorities of the control inputs match the data sheet. If the levels and priorities
are wrong, then the dedicated clock enables will not be used, and extra logic
blocks will be consumed to implement the function.

9-17 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Clock Enables

Q

Clock

Reset

1

Enable

Q

Clock

Reset

1 Enable

Counter
macroReset Q

Clock

Enable

always @(posedge Reset or posedge Clock)
if (Reset)

Q <= 0;
else if (Enable)

Q <= Q + 1;

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-25
May 2001

Synthesis tools are more likely to use dedicated clock enables if clocked always
statements are written to conform to the following template:

always @(posedge Clock or posedge Reset)
if (Reset)

// Reset actions
else if (Enable)

// Synchronous actions

Only the principles are being explained here; the details will depend on the
technology and tools that you are using. Check out the details in your synthesis
tool manual and technology data sheets.

Comprehensive Verilog, V6.09-26

Module 9: Synthesis of Arithmetic and Counters

May 2001

Gated Clocks

Notes:

If you want to be sure of synthesizing gated clocks, then they must be coded
explicitly, as shown in the top example opposite. Of course, you are responsible
for avoiding timing problems caused by gating the clock, such as glitches on the
gated clock and clock skew.

This sort of trick is sometimes regarded as being bad design practice. On the other
hand, it can be a very effective way of reducing power consumption. In any case,
it is best avoided when using FPGA and CPLD technologies; use the dedicated
clock enable instead.

9-18 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

Gated Clocks

assign GatedClock = Clock & Enb;

always @(posedge GatedClock or posedge Reset)
if (Reset)

Q <= 0;
else

Q <= Q + 1;

Q

1

Clock Reset

Enb

Module 9: Synthesis of Arithmetic and Counters

Comprehensive Verilog, V6.0 9-27
May 2001

Asynchronous Design

Notes:

Synthesis permits asynchronous design. Inherently asynchronous Verilog will
synthesis to asynchronous hardware. However, asynchronous designs require
careful manual verification to ensure their correctness. The synthesis tool gives no
guarantee that the synthesized hardware will function correctly, because it does
not understand the asynchronous timing relationships in the design. The
responsibility for identifying, fixing and verifying problems associated with
asynchronous design lies entirely with you!

It is best practice to partition your design into separate synchronous blocks, where
each block has a single clock. You should then include explicit synchronizers to
avoid metastability problems at the block interfaces. Asynchronous logic should
be isolated within separate blocks, and tested thoroughly.

9-19 • Comprehensive Verilog: Synthesis of Arithmetic and Counters Copyright © 2001 Doulos

S
Q

R
QB

assign Q = !(S & QB);

assign QB = !(R & Q);

assign Q = !(S & QB);

assign QB = !(R & Q);

Asynchronous Design

♦ Feedback loops in combinational logic can give
asynchronous latches

♦ Static timing analysis will break the timing loop
♦ If you must design asynchronous logic, isolate it in a separate
block

Comprehensive Verilog, V6.09-28

Module 9: Synthesis of Arithmetic and Counters

May 2001

Comprehensive Verilog, V6.0 10-1
May 2001

Module 10
Tasks, Functions, and Memories

Comprehensive Verilog, V6.010-2

Module 10: Tasks, Functions, and Memories

May 2001

Tasks, Functions, and Memories

Notes:

10-2 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Tasks, Functions, and Memories

Aim
♦ To understand Verilog tasks and functions and memory
arrays.

Topics Covered
♦ Tasks
♦ Functions
♦ Memory Arrays
♦ Initializing Memories

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-3
May 2001

Tasks

Notes:

Tasks are used to partition always statements into smaller, hierarchical sequences
of executable code. They are declared within modules.

A task consists of a name, an optional set of arguments (inputs, outputs and
inouts) and declarations, and a single statement, or sequence of statements
surrounded by begin ... end.

Note that the syntax for a task does not include a bracketed list of the task's
arguments after the task's name. This is different from the syntax for module port
declarations.

10-3 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Tasks

module TestFixture;
reg A, B;
reg [1:0] C;

task ASSIGN;
input [3:0] IP;

begin
A = IP[3];
B = IP[2];
C = IP[1:0];

end
endtask

...

endmodule

Declared in a moduleDeclared in a module

Can reference regs etc. in moduleCan reference regs etc. in module

begin-end probably requiredbegin-end probably required

May have inputs, outputs, inoutsMay have inputs, outputs, inouts

Comprehensive Verilog, V6.010-4

Module 10: Tasks, Functions, and Memories

May 2001

A Task may reference the regs and wires in the module in which the task is
declared using their simple names: values don't have to be passed through task
arguments. New registers may also be declared within the task. In the example
opposite, the task uses the regs A, B, and C that are declared in the module
TestFixture.

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-5
May 2001

Enabling a Task

Notes:

A task is enabled (i.e. called) by giving its name, and supplying a list of values
and/or regs for the arguments. Tasks may be enabled from initial or always
statements, or even from within other tasks.

When a task is enabled, the statement(s) in the task are executed; the flow of
control then returns to the place from where the task was enabled.

In this example, the initial statement causes the task to be enabled three times. The
first time, IP is given the value 4'b0000 and so A, B and C are all set to 0. The
second time the task is enabled, B will be set to 1, A and C to 0. The final task
enable causes A and B to be set to 0, and C to 2'b11.

10-4 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Enabling a Task

module TestFixture;
reg A, B;
reg [1:0] C;

task ASSIGN;
input [3:0] IP;
...

endtask

initial
begin
ASSIGN(4'b0000);
...
ASSIGN(4'b0100);
...
ASSIGN(4'b0011);
...

end

...
endmodule

“Enabling” = “Calling”“Enabling” = “Calling”

Actual values for IPActual values for IP

Task declaration could
go after it’s called

Task declaration could
go after it’s called

Comprehensive Verilog, V6.010-6

Module 10: Tasks, Functions, and Memories

May 2001

Note that the declaration of a task need not appear before the task is enabled. So in
this example, the task declaration could be the last thing in the module. The task
could also be declared in another module. If that module is on an upwards
hierarchical path from the module where the task is enabled, the task's simple
name (ASSIGN) may be used, and the definition of ASSIGN will be found by the
upwards name referencing rules.

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-7
May 2001

Task Arguments

Notes:

Tasks can have input, output and inout arguments. These are declared using the
appropriate keyword; however, they do not appear in a list after the task name like
module ports.

All the arguments are in fact registers, local to the task. The values for the input
and inout arguments are copied to the respective registers when the task is
enabled. Output and inout values are copied from the respective registers when the
task completes.

A task may contain any procedural statements, including timing controls. (i.e. any
statements that are allowed in initial or always statements.)

10-5 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Task Arguments

module TestFixture;
reg A, B, P, Q;
reg [1:0] C, R;

task ASSIGN;
input [3:0] IP;
output A, B;
output [1:0] C;
input Pause;
time Pause;

begin
#Pause
A = IP[3];
B = IP[2];
C = IP[1:0];

end
endtask

...
endmodule

A: B: P: Q:

C: R:

ASSIGN.IP:

ASSIGN.A: ASSIGN.B:

ASSIGN.C:

ASSIGN.Pause:

Arguments are registersArguments are registers

Timing control in taskTiming control in task

Register type time (64 bits)Register type time (64 bits)

Comprehensive Verilog, V6.010-8

Module 10: Tasks, Functions, and Memories

May 2001

The type time, which is mentioned here, is another of Verilog register types (we
have already met the reg and integer register types). time registers store 64 bit
unsigned values; this is how delays and simulation times are represented in
Verilog.

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-9
May 2001

Task Argument Passing

Notes:

When a task is enabled, values or expressions for the task's inputs and outputs are
listed in the order in which they were declared in the task. (Named mapping
cannot be used when enabling tasks.)

It follows from the fact that a task's output and inout values are copied out when
the task completes, that appropriate register names are required for the outputs and
inouts when the task is enabled. In this example, A, B, C, P, Q, and R must be
regs.

10-6 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Task Argument Passing

module TestFixture;
reg A, B, P, Q;
reg [1:0] C, R;

task ASSIGN;
input [3:0] IP;
output A, B;
output [1:0] C;
input Pause;
time Pause;
...

endtask

initial
begin
ASSIGN(4'b0000, A, B, C, 10);
ASSIGN(4'b0111, P, Q, R, 5);
...

end
...

endmodule Passed in orderPassed in order

Values are copied to inputs
when task is enabled

Values are copied to inputs
when task is enabled

Values are copied from outputs
when task completes

Values are copied from outputs
when task completes

Comprehensive Verilog, V6.010-10

Module 10: Tasks, Functions, and Memories

May 2001

Task Interaction

Notes:

Any registers defined inside a task (including the task arguments) are stored
statically i.e. the same storage is shared by all calls to the task. This can be used as
a positive feature as shown in the example opposite, but most of the time it is an
unwanted feature and can cause a lot of problems.

Generally, if you have a task containing timing controls and internal storage
(including arguments), you should be careful not to make concurrent calls to that
task.

10-7 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Task Interaction

task Mailbox;

input Write, Read;

inout [79:0] Data;

reg [79:0] State;

begin

if (Write)

#1 State = Data;

if (Read)

#1 Data = State;

end

endtask

task Mailbox;

input Write, Read;

inout [79:0] Data;

reg [79:0] State;

begin

if (Write)

#1 State = Data;

if (Read)

#1 Data = State;

end

endtask

Hello

initial

begin: blk1

reg [79:0] msg;

msg = "Hello";

Mailbox (1, 0, msg);

end

initial

begin: blk2

reg [79:0] msg;

#10 Mailbox (0, 1, msg);

$display("%s", msg);

end

initial

begin: blk1

reg [79:0] msg;

msg = "Hello";

Mailbox (1, 0, msg);

end

initial

begin: blk2

reg [79:0] msg;

#10 Mailbox (0, 1, msg);

$display("%s", msg);

end

Static storageStatic storage

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-11
May 2001

Synthesis of Tasks

Notes:

This example shows a task being used to "factor out" code that would otherwise
have to be repeated in each of two procedural blocks. This makes the code shorter
and easier to modify. The next page shows the task being enabled.

Synthesis

Synthesis tools require that tasks represent blocks of combinational logic, with the
qualification that out and inout parameters may be synthesized as flip-flops if the
task is called from a clocked always block (as shown on the next page). The
practical consequence is that for synthesis, tasks must not detect edges or contain
event controls.

10-8 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Synthesis of Tasks

task Count;

input Load;

input [7:0] Start, Stop;

inout [7:0] Cnt;

if (Load)

Cnt = Start;

else if (Cnt < Stop)

Cnt = Cnt + 1;

else

Cnt = Zero;

endtask

No event controlsNo event controls

What happens if <= is used?What happens if <= is used?

Describes combinational logicDescribes combinational logic

begin-end not needed herebegin-end not needed here

Comprehensive Verilog, V6.010-12

Module 10: Tasks, Functions, and Memories

May 2001

It is very important that a task that may be called more than once at the same
(simulation) time must not include any delays, otherwise two concurrent calls
might interfere with each other.

Note that "blocking" assignments are used for Cnt in this example. This is
necessary because "non-blocking" (RTL) assignments would not update Cnt
before the end of the task, and so enabling the task would have no effect.

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-13
May 2001

Enabling RTL Tasks

Notes:

Each call to a task is synthesized by replacing the task enable with a copy of the
logic represented by the task. This example describes two separate counters. In
other words, a task is NOT treated as a single copy of a resource that can be shared
by calling it at different points in an always statement - you would need to code
that explicitly.

In the example at the top, it is not possible to move the asynchronous reset and
clock edge detection into the task. Also, a blocking assignment has been used for
Acount; synthesis tools may require this because the task Count uses a blocking
assignment for the inout Cnt.

10-9 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

always @(posedge Clock or posedge Reset)

if (Reset)

Bcount <= 0;

else

Bcount <= Bcount_C;

always @(Bload or Bstart or Bstop)

Count (Bload, Bstart, Bstop, Bcount_C);

always @(posedge Clock or posedge Reset)

if (Reset)

Bcount <= 0;

else

Bcount <= Bcount_C;

always @(Bload or Bstart or Bstop)

Count (Bload, Bstart, Bstop, Bcount_C);

Enabling RTL Tasks

always @(posedge Clock or posedge Reset)

if (Reset)

Acount = 0;

else

Count (Aload, Astart, Astop, Acount);

always @(posedge Clock or posedge Reset)

if (Reset)

Acount = 0;

else

Count (Aload, Astart, Astop, Acount);

Each task enable creates additional logicEach task enable creates additional logic

Comprehensive Verilog, V6.010-14

Module 10: Tasks, Functions, and Memories

May 2001

The second example shows how non-blocking assignments can be used together
with a task; however, two always blocks are required.

For these reasons, it is often better to structure Verilog using functions (see the
next slide) or modules rather than tasks.

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-15
May 2001

Functions

Notes:

Functions are used to define any logical or mathematical function which
calculates a single result based on the values of a set of parameters. Functions may
be used in expressions in procedural statements and continuous assignments.

A function consists of an optional vector width or register type (integer, time); a
name; a set of input arguments (outputs and inouts are not allowed); optional
register declarations; and a single statement or a sequence of statements
surrounded by begin ... end.

A function returns a value. The name of the function is used as a register, and
when the function completes, that value is the value the function returns.

10-10 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Functions

function [3:0] OnesCount;
input [7:0] A;
integer I;
begin

OnesCount = 0;
for (I = 0; I <= 7; I = I + 1)
if (A[I]) OnesCount = OnesCount + 1;

end
endfunction

function [3:0] OnesCount;
input [7:0] A;
integer I;
begin

OnesCount = 0;
for (I = 0; I <= 7; I = I + 1)

if (A[I]) OnesCount = OnesCount + 1;
end

endfunction

function integer INC;

input N, M;

integer N, M;

INC = N + M + 1;

endfunction

function integer INC;

input N, M;

integer N, M;

INC = N + M + 1;

endfunction

assign N = OnesCount(V) + INC(V, W);assign N = OnesCount(V) + INC(V, W);

No outputs or inputsNo outputs or inputs

Function name used as registerFunction name used as register

NO assignments to external regsNO assignments to external regs

NO timing controlsNO timing controls

Return typeReturn type

Comprehensive Verilog, V6.010-16

Module 10: Tasks, Functions, and Memories

May 2001

A function may not include references to regs or wires declared outside the
function. Nor may a function contain timing controls such as delays (#) and events
(@).

Synthesis

Functions may be synthesized. They describe combinational logic.

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-17
May 2001

Memories

Notes:

Verilog supports the declaration and use of memory arrays. A memory array is a
one dimensional array of registers. Arrays of integers and regs of various widths
are allowed.

Memory arrays may only be addressed one word at a time. There is no simple way
of assigning values to or reading values from individual bits of the vectors that
make up the array, or of manipulating the array as a single entity.

10-11 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

reg [7:0] MEM [0:15];

reg [7:0] WORD;
reg [3:0] ADDR;

initial
begin
ADDR = 4;
WORD = MEM[ADDR];
MEM[ADDR] = {WORD[3:0], WORD[7:4]}; // Nibble swap

end

Memories

WidthWidth DepthDepth
7 0

0:

15:

Comprehensive Verilog, V6.010-18

Module 10: Tasks, Functions, and Memories

May 2001

Memories vs. Regs

Notes:

The declaration of an eight bit reg and of an eight word by one bit memory are
similar. If you inadvertently declare a memory instead of a reg, errors will be
reported if you try to reference the name of the memory illegally.

10-12 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Memories vs. Regs

♦ An eight bit reg

♦ An eight word by 1 bit memory array

reg [7:0] R;reg [7:0] R;

reg R[7:0];reg R[7:0];

R = 8'b00001111;R = 8'b00001111;

R = 8'b00001111;R = 8'b00001111;

OKOK

Illegal references to memoryIllegal references to memory

R[3:0] = 4'b1111;R[3:0] = 4'b1111;

R[3:0] = 4'b1111;R[3:0] = 4'b1111;

R[7] = 1'b1;R[7] = 1'b1; OKOK

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-19
May 2001

RAMs

Notes:

Memory arrays should be used with care for synthesis, because each indexed
name will be synthesized as a multiplexor structure. If a RAM were described and
synthesized in this way, the result would not be a regular RAM structure but a
huge unoptimizable mass of multiplexors. However, some synthesis tools include
an explicit memory synthesis capability, which allows the synthesis tool to
generate a practical RAM architecture from a behavioral description of a RAM
conforming to certain guidelines.

ASICs

ASICMemory synthesis is typically restricted to synthesizing purely synchronous
RAMs constructed out of gates and flipflops. Multi-port RAMs may be allowed.

10-13 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

RAMs

module smallram (clock, wr, rd, addr, data);
input clock, wr, rd;
input [3:0] addr;
inout [7:0] data;

reg [7:0] mem [0:15];

always @(posedge clock)
if (wr)
mem[addr] = data;

assign data = rd ? mem[addr]: 8'bZ;

endmodule

16x8 memory16x8 memory

Dynamic word selectDynamic word select

data is an inout...data is an inout...

4 address bits = 16 addresses4 address bits = 16 addresses

What would be synthesized?What would be synthesized?

Comprehensive Verilog, V6.010-20

Module 10: Tasks, Functions, and Memories

May 2001

The fundamental rules are that a value written into the RAM in one clock cycle
must not be read out again in the same cycle, and that two ports must not write to
the same address in the same cycle.

FPGAs

Certain FPGA synthesis tools are able to infer the use of memory macros from
RTL descriptions such as this, but as for ASICs, this capability is both tool
dependent and technology dependent.

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-21
May 2001

Instantiating Memories

Notes:

The more general solution to the problem of including memories in a design is to
instantiate the memory macros as components. The diagram shows the design
flow. Memory parameters such as bus widths and memory depth are fed into a
specialized piece of software which generates the actual memory, i.e. a hard
macro cell or a physical layout as appropriate for the implementation technology.
The memory generator may also create a behavioral Verilog model purely for
simulation purposes, and a module instance template to facilitate instantiation in
the top level netlist.

This same design flow can be used to generate other parameterized macros such
as counters and shift registers.

10-14 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Instantiating Memories

Parameters

Verilog
instance
template

Verilog
instance
template

Hard
macro /
layout

Verilog simulationVerilog simulation Layout toolsLayout tools

Verilog netlist

Memory generatorMemory generator

Verilog
behavioural
model

Verilog
behavioural
model

Comprehensive Verilog, V6.010-22

Module 10: Tasks, Functions, and Memories

May 2001

Loading Memories

Notes:

Verilog has a pair of system tasks to load data from a text file to a Verilog
memory array.

The format of the files that $readmemb and $readmemh read is shown opposite.

A file may contain binary or hexadecimal data, separated by white spaces. The
width and base are not required, as these are inferred from the size of the memory
being initialized.

A file may also contain comments and addresses. An address is a hexadecimal
number preceded by an @ character. When an address is encountered, the

10-15 • Comprehensive Verilog: Tasks, Functions and Memories Copyright © 2001 Doulos

Loading Memories

♦ $readmemb and $readmemh load memories from text files

module rom (addr, data);

input [7:0] addr;

output [7:0] data;

reg [7:0] arom [0:'H1FF];

assign data = arom[addr];

initial

$readmemb("rom.txt", arom);

endmodule

module rom (addr, data);

input [7:0] addr;

output [7:0] data;

reg [7:0] arom [0:'H1FF];

assign data = arom[addr];

initial

$readmemb("rom.txt", arom);

endmodule

rom.txt

0000_0101 // Load at address 0
0110_1110 // Load at address 1
10011111 01100111 // Load at addresses 2 & 3
@100 // Skip addresses 4 to FF
1111_1100 // Load at address 100 (Hex)

Underscores are allowedUnderscores are allowed

CommentsComments

Address
(Hex)
Address
(Hex)

$readmemb - binary data$readmemb - binary data

$readmemh - hex data$readmemh - hex data

Module 10: Tasks, Functions, and Memories

Comprehensive Verilog, V6.0 10-23
May 2001

following data words are read into that address, and subsequent addresses. Any
addresses that are skipped over in this way remain at an unknown value (8'bX).

Comprehensive Verilog, V6.010-24

Module 10: Tasks, Functions, and Memories

May 2001

Comprehensive Verilog, V6.0 11-1
May 2001

Module 11
Test Fixtures

Comprehensive Verilog, V6.011-2

Module 11: Test Fixtures

May 2001

Test Fixtures

Notes:

11-2 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Test Fixtures

Aim
♦ To learn techniques for writing test fixtures in Verilog HDL

Topics Covered
♦ System tasks for output
♦ Reading and writing text files
♦ The Verilog PLI
♦ Force and release
♦ Comparing RTL and gate level synthesis

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-3
May 2001

Modelling the Test Environment

Notes:

It is usual to use Verilog HDL to describe both the hardware design and the
environment used to test the design, analogous to a physical test bench. A Verilog
HDL test fixture includes code to generate the test cases, and possibly code to
analyze the output from the design or compare actual output with expected output.

Test Fixtures

A Verilog HDL test fixture often does more than just generate stimulus, as
illustrated. It can read test vectors from a file, write outputs to a file, compare
outputs with expected responses read from a file, write out statistics or
diagnostics, or load and dump memory contents.

11-3 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Modelling the Test Environment

Stimulus Results

Handshake

Design
under test

Reactive Environment

Test
vectors
Test
vectors

RAM/ROM
contents
RAM/ROM
contents

Expected
results
Expected
results

TraceTrace DiagnosticsDiagnostics

Comprehensive Verilog, V6.011-4

Module 11: Test Fixtures

May 2001

System Tasks for Output

Notes:

There is a family of 16 system tasks to write to the simulator log, and another
family of 16 tasks to write to a file (See the next slide).

$write is equivalent to $display except that it doesn't write a newline character
after the last argument.

$strobe is equivalent to $display except that it postpones writing out the values of
its arguments until the very end of the simulation time step.

Each of $display, $write, $strobe and $monitor has four variants, each having a
different default base. These are decimal, binary, octal and hex. Of course, you
can also use format specifiers to use whatever base you want.

11-4 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

System Tasks for Output

♦ Write a formatted line of text - now

♦ Write a formatted line of text - end of timestep

♦ Write a formatted partial line of text - now

♦ Write a line of text - whenever specified events occur

$display $displayb $displayh $displayo

$strobe $strobeb $strobeh $strobeo

$write $writeb $writeh $writeo

$monitor $monitorb $monitorh $monitoro

DecimalDecimal BinaryBinary HexHex OctalOctal

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-5
May 2001

Writing to Files

Notes:

Each of the output system tasks on the previous page has an equivalent system
task for writing to a files. (The tasks we have already met produce results in the
standard output,.typically the simulator's console window. This is equivalent to
writing to file number 1.)

To write to a file, the file must be opened using $fopen, which is a system
function. Files may be closed with $fclose.

11-5 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Writing to Files

♦ Open and close a file

♦ Write to one or more files

♦ Equivalents

$fopen $fclose

$fdisplay $fdisplayb $fdisplayh $fdisplayo

$fwrite $fwriteb $fwriteh $fwriteo

$fstrobe $fstrobeb $fstrobeh $fstrobeo

$fmonitor $fmonitorb $fmonitorh $fmonitoro

$fdisplay(1,arg); $display(arg);

Comprehensive Verilog, V6.011-6

Module 11: Test Fixtures

May 2001

Opening and Closing Files

Notes:

In order to use the tasks $fdisplay, $fmonitor etc., you must first open a file using
the system function $fopen.

$fopen returns an integer value, or 0 if the file could not be opened. This may
happen if, for example, the disk is full, or there is no privilege to write to the
specified file.

The integer value that is returned is then used as the first argument when calling
$fdisplay, $fmonitor etc. The other arguments are exactly the same as for the
corresponding tasks ($display, $monitor etc.)

11-6 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Opening and Closing Files

integer monitor_file_id;

parameter monitor_file = "monitor.txt";

initial

begin

monitor_file_id = $fopen(monitor_file);

if (!monitor_file_id)

begin

$display("Error: %s cannot be opened.", monitor_file);
$finish;

end

$fmonitor(monitor_file_id,"%t : ...", $realtime, ...);

...

$fclose(monitor_file_id);

end

0 indicates error0 indicates error

Don’t need to call $fcloseDon’t need to call $fclose

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-7
May 2001

When you have finished writing to the file, you can close the file with the system
task $fclose. Files that are not closed with this system task are automatically
closed when simulation finishes.

Comprehensive Verilog, V6.011-8

Module 11: Test Fixtures

May 2001

Multi-Channel Descriptor

Notes:

The integer returned by $fopen is called a multi-channel descriptor (MCD), as is
the first argument to $fdisplay etc. The MCD returned by $fopen has one bit set,
corresponding to the file that has just been opened. MCDs with more than one bit
set can be used to write the same text simultaneously to more than one file. The
least significant bit of an MCD corresponds to the standard output or simulator log
file. (Many Verilog simulators will write the standard output to a log file and to
the simulator's main window.) Thus you can have up to 31 files (plus the log) open
at any one time. $fclose releases the file channel, which can then be recycled for
another file.

11-7 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

31 4 3 2 1 0
00 000 1

Multi-Channel Descriptor

31 4 3 2 1 0

10 010 1

Bitwise orBitwise or

00 010 0

Next free channelNext free channel

file1

file2

integer file1, file2;

integer all_files;

initial

begin

file1 = $fopen("file1.txt");

file2 = $fopen("file2.txt");

all_files = file1 | file2 | 1;

$fdisplay(all_files, "Simulation of MyDesign");

end

Standard outputStandard output

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-9
May 2001

Reading From Files

Notes:

There are no general purpose tasks or functions in Verilog to read arbitrary text
from a file, except using the PLI. The only way to read from a file without using
the PLI is to read binary or hexadecimal data using the system tasks $readmemb
and $readmemh. These tasks respectively read binary and hexadecimal data into a
memory array and were described in the section on tasks, functions and memories.

11-8 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Reading From Files

♦ The only way to read text is to load a memory:

♦ Alternatively, use the Verilog ‘C’ Programming Language
Interface (PLI)

parameter NUM_PATTERNS = 42;

reg [7:0] test_patterns[1:NUM_PATTERNS];
integer pattern;

initial
begin
$readmemb("test_patterns.txt", test_patterns);
for (pattern = 1; pattern <= NUM_PATTERNS;

pattern = pattern + 1)
@(negedge Clock);

end

assign inputs = test_patterns[pattern];

parameter NUM_PATTERNS = 42;

reg [7:0] test_patterns[1:NUM_PATTERNS];
integer pattern;

initial
begin
$readmemb("test_patterns.txt", test_patterns);
for (pattern = 1; pattern <= NUM_PATTERNS;

pattern = pattern + 1)
@(negedge Clock);

end

assign inputs = test_patterns[pattern];

You have to know!You have to know!

Comprehensive Verilog, V6.011-10

Module 11: Test Fixtures

May 2001

The Verilog PLI

Notes:

The Verilog PLI permits functions written in C to be called from Verilog.

Although the PLI is as much part of the IEEE 1364 Verilog standard as the rest of
the Verilog language, the exact manner in which C functions are linked to a
particular simulator differ between different simulators.

The PLI is introduced in more detail in an appendix to this course.

11-9 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

The Verilog PLI

♦ Part of IEEE Std. 1364-1995
♦ Allows C functions to be called from Verilog

♦ Use the PLI for:
� Calling C library functions
� Direct access file I/O or fast file I/O
� Graphical output direct to your screen
� Including C models in your Verilog simulation
� Interfacing to hardware modelers or emulators
� Delay calculation

Verilog

C

Compiler

Object codeCompiler

Simulator

Linked

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-11
May 2001

Checking Expected Results

Notes:

Expected simulation results may also be read into a memory array. These may
have been written by a test fixture in a previous simulation, or they may have been
generated in some other way.

This slide shows the first part of an example showing how to read expected
simulation results from a file. The example is continued on the next page.

11-10 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Checking Expected Results

module TestFixture;

parameter START_TIME = 100,

STROBE_DELAY = 10,

NUM_PATTERNS = 42;

wire A, B, C;

wire [7:0] D;

integer i, num_errors;

task report_error;

begin

num_errors = num_errors + 1;

$display("Error at time %t", $time);

end

endtask

Comprehensive Verilog, V6.011-12

Module 11: Test Fixtures

May 2001

Checking Expected Results (Cont.)

Notes:

Note the use of a task to encapsulate reporting an error during simulation.

11-11 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Checking Expected Results (Cont.)

reg [1:11] expected[1:NUM_PATTERNS];

TheDesign UUT (..., A, B, C, D);

initial

begin

$readmemh("expected_patterns.txt", expected);

#START_TIME;

for (i = 1; i <= NUM_PATTERNS; i = i + 1)

#STROBE_DELAY

if ({A, B, C, D} !== expected[i])

report_error;

$display("Completed with %d errors", num_errors);

end

...

endmodule

OutputsOutputs

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-13
May 2001

Force/Release

Notes:

force/release

Force and release are procedural statements intended for debugging. Force can be
used to override the value of any net or register until it is released. These are the
only statements in Verilog that cause nets (e.g. wires) to be assigned values in
procedures (initial or always statements).

A common use of force and release is to initialize regs or wires, especially at the
gate-level, where the simulator is unable to do so. This should be avoided as far as
possible (How do you know that the hardware will initialize in the same way?),
but is still sometimes required.

11-12 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Force/Release

Overrides value of net or register...Overrides value of net or register...

DFF ff1 (Clock, D, Q);

assign D = !Q;

initial

begin

Clock = 0;

repeat (10) #10 Clock = !Clock;

end

initial

begin

force D = 0;

#15 release D;

end

D

Q

Clock

InitializationInitialization

... until released... until released

Comprehensive Verilog, V6.011-14

Module 11: Test Fixtures

May 2001

Design Flow

Notes:

Following synthesis, we need to simulate the design at gate level. For ASIC
design, simulation is usually done both pre-layout (using estimated delays) and
post-layout (using back-annotated delays). For FPGA and CPLD design, the pre-
layout simulation is often omitted because of the inaccuracy of pre-layout timing
estimates. Sometimes simulation may be omitted altogether and be replaced by
programming an actual hardware part.

The high level design flow using Verilog involves simulating the design at two or
more levels of abstraction, and comparing the simulation outputs across these
level of abstraction. If synthesis is used, this means simulating the RTL Verilog,
simulating the synthesized gate level design, and rigorously comparing the results
of the two simulations.

11-13 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Design Flow

DFT, Place and RouteDFT, Place and Route

System Analysis and PartitioningSystem Analysis and Partitioning

Post-Layout SimulationPost-Layout Simulation

Write RTL VerilogWrite RTL Verilog Write Verilog Test FixtureWrite Verilog Test Fixture

Gate Level SimulationGate Level Simulation

Synthesise to Gate LevelSynthesise to Gate Level

Simulate RTL VerilogSimulate RTL Verilog

ASIC only

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-15
May 2001

Why Simulate the Gates?

Notes:

Ideally it might be thought that synthesis is "correct by construction", so the
synthesized design will preserve the functionality of the original Verilog source,
making functional simulation of the gates unnecessary. This is definitely not true
in practice!

For one thing, simulators and synthesis tools can actually interpret the Verilog
code differently. We have covered the main cases during this course. For example,
synthesis tools ignore initial statements.

Secondly, the RTL simulation only represents the timing of the circuit at the clock
cycle level, and does not include any of the detailed timing information present at
the implementation level. Static timing analysis tools are very useful for locating

11-14 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Why Simulate the Gates?

♦ RTL simulation and synthesis interpret Verilog differently:
� Initial values of regs
� Sensitivity lists (event controls)
� Logic on clock lines
� Synthesis directives
� FSM synthesis - state encoding; safety

♦ Limitations of static timing verification:
� Multiple clock domains
� Asynchronous sets and resets
� Combinational feedback

♦ Interface timing (will need additional vectors)

♦ Bugs in tools or libraries

Comprehensive Verilog, V6.011-16

Module 11: Test Fixtures

May 2001

problems with critical timing paths in synchronous circuits, but gate level
simulation is the only way to verify the timing across asynchronous interfaces.

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-17
May 2001

Verilog Flow for PLD Design

Notes:

Many FPGA and CPLD vendors support a Verilog design flow, which means that
they provide Verilog gate-level models for their technology, and generate a
Verilog netlist and an SDF file from their fitter or place and route tools.

The diagram opposite shows the tool flow for the simulation of a PLD or FPGA
before and after fitting or place and route. Note the following:

• Only the RTL Verilog code is common to simulation and synthesis. The test
fixture is for simulation only. The constraints are for synthesis/fitting only.

11-15 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Verilog Flow for PLD Design

SDFSDFVerilog
netlist
Verilog
netlist

Verilog
RTL
Verilog
RTL ConstraintsConstraints

Verilog
Library
Verilog
Library Program

file
Program
file

Post-layout
simulation
Post-layout
simulation

RTL
simulation
RTL

simulation

SynthesisSynthesis

FitterFitter

Verilog
test
bench

Verilog
test
bench

Comprehensive Verilog, V6.011-18

Module 11: Test Fixtures

May 2001

• With some tool combinations, constraints are input to the synthesis tool,
and automatically passed through to the fitter. With other tool
combinations, constraints are input directly to the fitter.

• The same test fixture is used for both simulations.

• Gate-level simulation is performed after fitting, not before fitting.

• The Verilog netlist from the fitter is for simulation only. The fitter directly
produces the files necessary for programming the device.

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-19
May 2001

Tool Flow for ASIC Design

Notes:

The tool flow for ASIC design is an extension of that for PLD design. Note the
following:

· Three simulations are performed: RTL, pre-layout and post-layout.

· The pre-layout simulation uses estimated delays calculated by the synthesis tool.

· Inserting logic to increase the testability of the design and performing automatic
test pattern generation is an important part of many ASIC design flows, and
impacts the simulation methodology. You may want to simulate before test logic
insertion, after test logic insertion, or both.

11-16 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Tool Flow for ASIC Design

Estimated
Physical and
electrical data
affecting delays

Verilog
RTL
Verilog
RTL

RTL simulationRTL simulation
SynthesisSynthesis

Post-layout simulationPost-layout simulation

SDFSDF

SDFSDF

Pre-layout simulationPre-layout simulation

NetlistNetlist

Place and RoutePlace and Route

MasksMasks

ScriptScript

Insert test logicInsert test logic

Verilog
test
bench

Verilog
test
bench

Verilog
Library
Verilog
Library

Comprehensive Verilog, V6.011-20

Module 11: Test Fixtures

May 2001

· The pre- and post-layout simulations use the same Verilog netlists: only the SDF
files are different.

· Physical and electrical data affecting delays can be fed back from layout to
synthesis. Sophisticated design flows are being developed which try to meet
timing constraints by iterating around the synthesis-layout loop a small number of
times, thus achieving good timing closure.

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-21
May 2001

Verilog Libraries

Notes:

A Verilog library can be a collection of modules in source code form. Many
Verilog tools support such libraries. Other tools have proprietary library formats.

The significance of Verilog libraries is that they are scanned by the compiler to
resolve module references i.e. to find modules that have not been defined
elsewhere, the point being that only library modules actually used in the design
will be compiled.

-v

Verilog libraries come in two forms. The -v command line flag indicates that the
library is a single text file.

11-17 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Verilog Libraries

♦ Library file - one file contains all cells

♦ Library directory - one cell per file

module cell1

module cell2

module cell3

module cell1

module cell2

module cell3

verilog -v libraryfile.v

verilog -y librarydirectory +libext+.v

module cell1 module cell2 module cell3

cell1.v cell2.v cell3.v

Tools differTools differ

libraryfile.v

File ExtensionFile Extension

Comprehensive Verilog, V6.011-22

Module 11: Test Fixtures

May 2001

-y

The -y command line flag indicates that the library is a directory containing one
source text file per module.

+libext+

The +libext+ command line flag is used together with -y and indicates the
extension to be added to the module name by the compiler in order to construct
the corresponding filename. So a module cell1 is expected to be found in the file
cell1.v in the directory librarydirectory.

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-23
May 2001

Verilog Results Comparison

Notes:

The diagram shows a simple scenario for gate level verification, where simulation
is entirely within the Verilog environment. The Verilog test fixture contains code
to dump simulation results to a text file. The gate level description is plugged into
the same Verilog test fixture. The resulting text files can be compared using UNIX
diff or a similar utility.

11-18 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Verilog Results Comparison

Verilog Test Fixture The same Test Fixture

Stimulus

Results

Gate
level
Verilog

Stimulus

Results

RTL
Verilog

Verilog
Library
Verilog
Library

Text
file
Text
file

Text
file
Text
file

diff

Synthesis

Comprehensive Verilog, V6.011-24

Module 11: Test Fixtures

May 2001

Comparison On-the-fly

Notes:

This diagram shows an alternative verification scenario, where two description of
the same design are simulated side by side in the same test fixture, and the results
compared on the fly. This has the advantage that simulation results do not have to
be dumped to disk. The simulation can be set up such that it stops when there is a
difference. The user can then investigate the reason for the difference.

11-19 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Comparison On-the-fly

Verilog Test Bench

Gate
level
Verilog

Stimulus

RTL
Verilog

Compare

Verilog
Library
Verilog
Library

Module 11: Test Fixtures

Comprehensive Verilog, V6.0 11-25
May 2001

Behavioral Modeling

Notes:

The test fixture usually takes longer to develop than the RTL code, but how do
you debug the test fixture? One way is to start by writing a functionally accurate
behavioral model of the design at the highest possible level of abstraction, and use
this model to accelerate test bench development. You then have a higher quality
test fixture at the start of the RTL debug cycle, so you can then concentrate on
debugging the RTL code.

11-20 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Behavioral Modelling

Stimulus

Results

RTL
Verilog

Text
file
Text
file

Stimulus

Results

Behavioral
Verilog

Text
file
Text
file

diff

Debug the test fixture!Debug the test fixture!

Test Fixture The same Test Fixture

Comprehensive Verilog, V6.011-26

Module 11: Test Fixtures

May 2001

Behavioral Modeling (Cont.)

Notes:

The advantages of comparison-on-the fly and automated test fixtures can also be
achieved by using behavioral models. For example, the stimulus generation block
in a test fixture could be replaced with a behavioral model of the hardware
interface connected to the design-under-test that is able to interact bi-directionally
with the design, or a behavioral model could be used to generate the expected
outputs of the design.

This subject is explored in full in the Doulos training course "Expert Verilog
Verification". Behavioral modeling in Verilog is the subject of the next section in
the present course.

11-21 • Comprehensive Verilog: Test Fixtures Copyright © 2001 Doulos

Behavioral Modelling (Cont.)

Verilog Test Fixture

Design
under test

Compare

Behavioral
model of

environment

Behavioral
model to
generate
expected
outputs

CommandsCommands

Covered in Doulos Expert Verilog training courseCovered in Doulos Expert Verilog training course

Comprehensive Verilog, V6.0 12-1
May 2001

Module 12
Behavioral Verilog

Comprehensive Verilog, V6.012-2

Module 12: Behavioral Verilog

May 2001

Behavioral Verilog

Notes:

12-2 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Behavioral Verilog

Aim
♦ To to understand the concept of a reference model, and learn
the Verilog constructs available for high level behavioral
modelling and test fixtures.

Topics Covered
♦ Reals
♦ Timing controls
♦ Named events
♦ Fork join
♦ External disable
♦ Intra-assignment timing controls
♦ Continuous procedural assignment

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-3
May 2001

Algorithmic Description

Notes:

This example shows a module which performs an abstract arithmetical
calculation. The module takes in the lengths (X and Y) of the two shortest sides of
a right-angle triangle and calculates the length of the hypotenuse (Z) using
Pythagorean’s theorem (X2 + Y2 = Z2). The lengths of the sides are represented
as real numbers.

The significant feature of the procedural block that models the behavior of the
module is that it uses a successive approximation algorithm to calculate the square
root function. The number of iterations of the while loop is not fixed in advance,
but depends on the values of X and Y each time the always statement is executed.
This description is abstracted from any hardware implementation because issues
of hardware resource allocation and cycle level timing have still to be decided.

12-3 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

module PYTHAGORAS (X, Y, Z);
input [63:0] X, Y;
output [63:0] Z;

parameter Epsilon = 1.0E-6;
real RX, RY, X2Y2, A, B;

always @(X or Y)
begin

RX = $bitstoreal(X);
RY = $bitstoreal(Y);
X2Y2 = (RX * RX) + (RY * RY);
B = X2Y2;
A = 0.0;
while ((A - B) > Epsilon || (A - B) < -Epsilon)
begin
A = B;
B = (A + X2Y2 / A) / 2.0;

end
end
assign Z = $realtobits(A);

endmodule

module PYTHAGORAS (X, Y, Z);
input [63:0] X, Y;
output [63:0] Z;

parameter Epsilon = 1.0E-6;
real RX, RY, X2Y2, A, B;

always @(X or Y)
begin
RX = $bitstoreal(X);
RY = $bitstoreal(Y);
X2Y2 = (RX * RX) + (RY * RY);
B = X2Y2;
A = 0.0;
while ((A - B) > Epsilon || (A - B) < -Epsilon)
begin
A = B;
B = (A + X2Y2 / A) / 2.0;

end
end
assign Z = $realtobits(A);

endmodule

real r;
integer i;

r = $itor(i); // 123 -> 123.0
i = $rtoi (r); // 456.789 -> 456

real r;
integer i;

r = $itor(i); // 123 -> 123.0
i = $rtoi (r); // 456.789 -> 456

Ports can’t be realPorts can’t be real

Algorithmic Description

♦ Can’t
synthesize

� Reals
� While loop
� Division

♦ Decisions
� * + >
� Latency

Comprehensive Verilog, V6.012-4

Module 12: Behavioral Verilog

May 2001

This module cannot be mapped directly into hardware - there are a lot of design
decisions to make first, such as: How many multipliers? What multiplier design?
How many comparators? How much parallelism? What bit level representation
for floating point numbers?

Descriptions involving multiple communicating Verilog procedures, where each
procedure represents a pure algorithm of this kind, can be used to describe
systems at a high level of abstraction.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-5
May 2001

Wait Timing Control

Notes:

Now let's consider communication and synchronization between procedural
blocks. At RTL, each procedural block either has a single explicit clock, or
represents combinational logic. If the restrictions of RTL descriptions are lifted,
then procedural blocks can have any synchronous or asynchronous behavior. For
example, the two tasks shown opposite each contain multiple timing controls, and
model an asynchronous handshake.

Where a procedural block contains multiple timing controls, then each timing
control represents a different state in the control circuit being modelled. Since
each timing control can be sensitive to a different variable or can even be a simple
delay, it is possible to write very abstract descriptions a long way removed from
the hardware implementation.

12-4 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Wait Timing Control
reg RTS, CTS;
reg [71:0] DATA;
task OUT;
input [71:0] Message;
begin

RTS = 1;
DATA = Message;
@(negedge CTS)
RTS = 0;
#1;

end
endtask
task IN;
output [71:0] Message;
begin

wait (RTS == 1)
CTS = 1;
Message = DATA;
#1
CTS = 0;
@(negedge RTS);

end
endtask

Event controlEvent control

Delay controlDelay control

Level sensitiveLevel sensitive

N.B. Don’t use task arguments in waitN.B. Don’t use task arguments in wait

RTS

CTS

Comprehensive Verilog, V6.012-6

Module 12: Behavioral Verilog

May 2001

Wait

This example introduces the third kind of timing control; the wait timing control.
Unlike the event control (@...) and the delay control (#...), the wait timing control
is level sensitive. The procedure suspends until the expression in parenthesis
becomes true. If the expression is already true, the procedure is not suspended but
simply continues its execution past the wait timing control.

Note that task inputs should not be used in wait expressions, because a value is
only copied into the input when the task is called. The task will not see a
subsequent change in the wire or reg whose value was copied.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-7
May 2001

Events

Notes:

Verilog contains a rich set of language constructs for describing concurrency and
synchronization. These constructs cannot be used at the register transfer level, but
can be exploited when coding at higher levels of abstraction to express the design
in a simpler and sometimes a more natural way.

Named event

A named event is used to synchronize procedures; it can be thought of as a zero bit
register that doesn't have a value - like a reg, only simpler! Instead of being
assigned, a named event is triggered (or "made to happen") using the syntax

12-5 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Events

initial
repeat(20) #500 -> Start;

initial
repeat(20) #600 -> Interrupt;

initial
$monitor ($time,, enb,, data);

always @Interrupt
begin

disable Cycle;
end

always @Start
begin: Cycle

...
#Delay ...

end

initial
repeat(20) #500 -> Start;

initial
repeat(20) #600 -> Interrupt;

initial
$monitor ($time,, enb,, data);

always @Interrupt
begin

disable Cycle;
end

always @Start
begin: Cycle

...
#Delay ...

end

event Start, Interrupt;event Start, Interrupt; Named eventsNamed events

Event triggersEvent triggers

Disable another blockDisable another block

Await next interrupt event triggerAwait next interrupt event trigger

Comprehensive Verilog, V6.012-8

Module 12: Behavioral Verilog

May 2001

->name. The name of the event can appear in an event control, and thus the named
event can cause other procedural blocks to wake up. Technically, a named event is
another kind of data type. In the example opposite, the named events Start and
Interrupt are generated at regular intervals by the initial statements, and are used
to kick off the second and third blocks respectively.

Disable

This example also illustrates an the external disable. We have previously used the
disable statement to jump out of an enclosing named block (e.g. to break a loop
from within the loop). It can also be used to jump out of a named block that is part
of another procedural block (an external disable as opposed to a self disable). This
can provide a high level way to model an interrupt, as shown opposite, or a reset
(see later). In practice, it can be quite difficult to model an interrupt with a disable
statement, because no state information is saved.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-9
May 2001

Fork-Join

Notes:

In the previous example, there were three concurrent initial statements. This can
be modeled in an alternative way by using a single initial statement and enclosing
the three procedural statements in a fork-join block instead of a begin-end block.

Fork-join

So far, we have grouped statements within a procedure using the begin-end
keywords, causing the statements to be executed in sequence. The fork-join
keywords are used to enclose statements which execute in parallel, the entire
construct terminating only when the last enclosed statement terminates. Begin-end
and fork-join constructs can be nested to any depth, making this a very powerful

12-6 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

♦ Concurrency using multiple initials

♦ Concurrency using fork-join

Fork-Join

initial

repeat(20) #500 -> Start;

initial

repeat(20) #600 -> Interrupt;

initial

$monitor ($time,, enb,, data);

initial

repeat(20) #500 -> Start;

initial

repeat(20) #600 -> Interrupt;

initial

$monitor ($time,, enb,, data);

initial

fork : Stimulus

repeat(20) #500 -> Start;

repeat(20) #600 -> Interrupt;

$monitor ($time,, enb,, data);

join

initial

fork : Stimulus

repeat(20) #500 -> Start;

repeat(20) #600 -> Interrupt;

$monitor ($time,, enb,, data);

join

The sameThe same

Order is irrelevantOrder is irrelevant

Order is irrelevantOrder is irrelevant

Comprehensive Verilog, V6.012-10

Module 12: Behavioral Verilog

May 2001

way to describe concurrency. It is often useful when generating stimulus, as
shown here.

In this example, the two repeat loops run in parallel with events being triggered at
times 500, 600, 1000, 1200, ... The $monitor process runs from the start of
simulation.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-11
May 2001

Disable, Wait

Notes:

Here is another example illustrating the use of multiple timing controls, the wait
timing control and the external disable.

The first procedural block describes the behavior of a synchronous circuit
implementing a fetch-execute instruction cycle. On each tick of the Clock, the
procedure performs part of the instruction cycle (by calling a task) then moves on
to the next timing control.

The second procedural block describes the behavior of an asynchronous reset.
When Reset is asserted, the instruction_cycle block is disabled (i.e. the currently
executing instruction is interrupted), and the first block then waits at the top until
the Reset is deasserted.

12-7 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Disable, Wait

always
begin: instruction_cycle
wait (!Reset);
@(posedge Clock)
fetch_instruction;

@(posedge Clock)
decode_instruction;

@(posedge Clock)
execute_instruction;

@(posedge Clock)
store_result;

end

always @Reset
if (Reset)
begin
disable instruction_cycle;
reset_cpu;

end

task fetch_instruction;
...

endtask

External DisableExternal Disable

Implicit FSMImplicit FSM

Comprehensive Verilog, V6.012-12

Module 12: Behavioral Verilog

May 2001

Note that some synthesis tools are able to synthesize descriptions with multiple
clock events, like the top always statement. There is an implicit finite state
machine in the description, so at least two flip-flops would be inferred from the
four @(posedge Clock) statements. There is no corresponding reg for these flip-
flops.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-13
May 2001

Intra-assignment Timing Controls

Notes:

In behavioral descriptions, it is sometimes convenient to write a timing control in
the middle of a procedural assignment - an intra assignment timing control. This
has the effect of suspending the procedural block after evaluating the expression
on the right hand side of the assignment, but before updating the register on the
left hand side. Effectively, the value being assigned is stored in a temporary
variable while the procedure is suspended.

In the example opposite, the intra-assignment timing controls

(B = @Trig A; A = @Trig B;) are used to prevent a simulation race condition
when swapping the values of A and B. The comment at the bottom of the example
shows a bad fragment of code where there is a race between the two assignments.

12-8 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Intra-assignment Timing Controls

event Trig;
reg A, B;

initial
{A,B} = 2'b01;

initial
repeat (10) #10 -> Trig;

always // Swap A with B
fork

B = @Trig A;
A = @Trig B;

join

/*
always
fork

@Trig B = A;
@Trig A = B;

join
*/

Intra-assignment controlIntra-assignment control

Simulation race!Simulation race!

begin

tmp = B;

@Trig A = tmp;

end

begin

tmp = B;

@Trig A = tmp;

end

A = @Trig B;A = @Trig B;

EquivalentEquivalent

Comprehensive Verilog, V6.012-14

Module 12: Behavioral Verilog

May 2001

Blocking Assignments

Notes:

Timing controls block the flow of control through a procedural block. For
example, in a begin-end block with delays, the simulator waits for each delay
before proceeding with the following statement. The begin-end completes when
the final statement has been executed (after any delay).

When an intra-assignment timing control is used within a blocking assignment,
the assignment also blocks the flow of control. This is illustrated by the example
at the bottom, which has exactly the same simulation behavior as the example at
the top of the page.

12-9 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Blocking Assignments

initial
begin

begin
A = 0;
A = #10 1;
A = #10 0;

end
$display($time);

end

initial
begin
begin

A = 0;
A = #10 1;
A = #10 0;

end
$display($time);

end

initial
begin

begin
A = 0;

#10 A = 1;
#10 A = 0;

end
$display($time);

end

initial
begin
begin

A = 0;
#10 A = 1;
#10 A = 0;

end
$display($time);

end

Reached at time 20Reached at time 20

Same behaviourSame behaviour

Intra-assignment delaysIntra-assignment delays

Reached at time 20Reached at time 20

Delay controlsDelay controls

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-15
May 2001

Non-Blocking vs. Fork-Join

Notes:

A procedural assignment using the symbol <= is a non-blocking procedural
assignment. The assignment schedules an event to occur under the control of the
timing control, but the execution of the procedure is not blocked.

Thus the begin-end block opposite is executed and completes at time 0, and
schedules A to change at times 0, 10 and 20.

There are similarities between using non-blocking assignments in a begin-end and
blocking statements in a fork-join statement, though they are certainly not
equivalent. The difference is that blocking assignments still block in a fork-join.
All the statements are executed in parallel, so they don't block each other, but the
simulator won't exit from the fork-join until all the blocking assignments have

12-10 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Non-Blocking vs. Fork-Join

initial
begin

begin
A <= 0;
A <= #10 1;
A <= #20 0;

end
$display($time);

end

initial
begin
begin

A <= 0;
A <= #10 1;
A <= #20 0;

end
$display($time);

end

Non-blocking assignmentsNon-blocking assignments

Reached at time 0Reached at time 0

initial
begin

fork
A = 0;
A = #10 1;
A = #20 0;

join
$display($time);

end

initial
begin
fork

A = 0;
A = #10 1;
A = #20 0;

join
$display($time);

end
Reached at time 20Reached at time 20

Similar - not the sameSimilar - not the same

Blocking assignmentsBlocking assignments

Comprehensive Verilog, V6.012-16

Module 12: Behavioral Verilog

May 2001

completed. In this example, that will be at time 20, when the third assignment to A
completes.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-17
May 2001

Overcoming Clock Skew

Notes:

There is one important application of intra-assignment delays in RTL design. It
concerns the problem of clock skew.

Clock skew can be a problem in real hardware, causing hold time violations at the
flip-flops. It can also be a problem in RTL code! The problem occurs when there
are delays (even zero-length delays) in the clock net. This might happen when
clock buffers are instanced explicitly in a design, rather than being inferred by the
synthesis tool. (Instancing clock buffers may sometimes be necessary in both
ASIC design and FPGA design.)

12-11 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Overcoming Clock Skew

BUFG C1 (Clock, GlobalClock);

always @(posedge Clock)
b <= #1 a;

always @(posedge GlobalClock)
c <= #1 b;

BUFG C1 (Clock, GlobalClock);

always @(posedge Clock)
b <= #1 a;

always @(posedge GlobalClock)
c <= #1 b;

Possible RTL “hold-time” violationPossible RTL “hold-time” violation

Synthesis ignores delaysSynthesis ignores delays

Clock-Output delayClock-Output delay

Clock bufferClock buffer

Comprehensive Verilog, V6.012-18

Module 12: Behavioral Verilog

May 2001

The problem of RTL clock skew can be solved using intra-assignment delays, as
shown. The delay must be bigger than any clock delays. In effect, a nominal clock
to output delay is being modeled.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-19
May 2001

Continuous Procedural Assignment

Notes:

The continuous procedural assignment is another very powerful statement for
controlling concurrent access to Verilog registers.

The continuous procedural assignment is a kind of procedural assignment i.e. an
assignment to a register written within a procedural block. It differs in two very
significant ways from the usual procedural assignment.

Firstly, it has a higher priority than the usual procedural assignment. In the
example above, the assignment assign Count = Data; takes priority over the
procedural assignments in the first procedural block when the asynchronous load
is active.

12-12 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Continuous Procedural Assignment

reg [7:0] Count;

always @(posedge Clock)
if (Up)
Count <= Count + 1;

else
Count <= Count - 1;

// Asynchronous load...
always
begin

wait (Load)
assign Count = Data;

wait (!Load)
deassign Count;

end

Assign has higher priorityAssign has higher priority

Continuously assigned
until deassigned

Continuously assigned
until deassigned

Dynamic sensitivity listDynamic sensitivity list

Count must be a regCount must be a reg

Comprehensive Verilog, V6.012-20

Module 12: Behavioral Verilog

May 2001

Secondly, it is continuous, i.e. the register on the left hand side is continuously
updated with the value of the expression on the right hand side. When the
assignment is executed, a dynamic sensitivity list is created from the names of
nets and registers on the right hand side, and the assignment is triggered whenever
an event occurs on an item in the sensitivity list.

The register on the left hand side stays continuously assigned until another
continuous procedural assignment is made to that register, or until the register is
explicitly deassigned as shown.

Module 12: Behavioral Verilog

Comprehensive Verilog, V6.0 12-21
May 2001

Unsynthesizable Verilog

Notes:

The Verilog HDL statements that are not synthesizable are shown opposite.
Unsynthesizable means that the construct is not supported universally. Some
constructs mentioned here are not supported by any tools. Others are supported by
some tools but not by others. In either case, these statements should not be used
for synthesis, as, at best, the code will not be easily portable between tools.

Simply knowing which statements can be synthesized and which not is only part
of the story. It is important also to know how to use the synthesizable constructs to
achieve the desired result in a predictable way.

Unbounded Verilog constructs are not synthesizable...

12-13 • Comprehensive Verilog: Behavioral Verilog Copyright © 2001 Doulos

Unsynthesizable Verilog

♦ Initial blocks

♦ Repeat, while and forever (in
general)

♦ Disabling another block (self
disable is OK)

♦ Fork/join, assign/deassign,
force/release

♦ Timing controls (wait, #, @)
other than always @(…)

♦ Register types real and time

♦ Net types other than wire and
supply

♦ Named events

♦ Operators / % === !==

♦ User defined and switch level
primitives

♦ Delays and logic strengths

♦ Specify blocks and
specparams

♦ Hierarchical names and
defparam

♦ System tasks and functions ($)
and the PLI

Comprehensive Verilog, V6.012-22

Module 12: Behavioral Verilog

May 2001

Indefinite loops

Indefinite loops (such as while loops) are unbounded because the number of loop
iterations is not fixed, so the synthesis tool cannot create hardware for each loop
iteration. An exception is loops explicitly synchronized to a clock edge in an
implicit FSM description.

/ %

The division and remainder operators are unbounded, because the number of
hardware clock cycles required to produce a result is unknown.

real

Real registers are unbounded, because the accuracy, range and rounding of the
representation of real numbers is undefined.

Comprehensive Verilog, V6.0 13-1
May 2001

Module 13
Project Management

Comprehensive Verilog, V6.013-2

Module 13: Project Management

May 2001

Project Management

Notes:

13-2 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Project Management

Aim
♦ To understand the issues and solutions in managing a high
level design project using Verilog

Topics Covered
♦ Writing Verilog for simulation and synthesis
♦ Verilog coding standards and review
♦ Verilog data management and control
♦ Functional RTL verification
♦ Gate level verification

Module 13: Project Management

Comprehensive Verilog, V6.0 13-3
May 2001

Writing Verilog for Simulation &
Synthesis

Notes:

You can think of the Verilog language as organized into a number of proper
subsets. Within the outer circle, the entire language as defined in the 1364 LRM
can be simulated with any Verilog simulator, so it is appropriate for abstract
behavioral modeling. A proper subset of Verilog, the RTL subset, is appropriate
for designing hardware at the register transfer level and can be synthesized down
to gate level by a synthesis tool. Within the inner circle, a proper subset of RTL
Verilog is a gate level netlist using logical primitives available in the target
implementation technology.

13-3 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Writing Verilog for Simulation & Synthesis

Gate
level
netlist

Synthesisable RTL

Verilog

1 week training +
4 week playing
1 week training +
4 week playing

Where should you start?Where should you start?

Comprehensive Verilog, V6.013-4

Module 13: Project Management

May 2001

Where is the right point to start coding Verilog? There are two common mistakes.
The first mistake is to attempt to do detailed hardware design by writing Verilog
at too high a level of abstraction (the outer circle). The result is that the Verilog
code is either not synthesizable, or else generates a very inefficient hardware
implementation. The second mistake is to attempt to design hardware with a
Verilog style that lies inside or close to the inner circle. By coding at a level that
lies close to the hardware you can maximize your control over the details of the
hardware design, but sacrifice abstraction and productivity in the process.

These mistakes can only be overcome by in-depth training and by experience. For
example, a one week training course followed by four weeks of playing with the
language and tools might be an appropriate mix.

Module 13: Project Management

Comprehensive Verilog, V6.0 13-5
May 2001

Verilog Coding Standards

Notes:

Verilog coding standards come in two kinds. Lexical coding standards specify the
choices to be made in laying out the source code and choosing the case of
identifiers, naming conventions, inserting comments and so on. Lexical coding
standards are important in enforcing consistency of layout and style across a
design team. Synthesis coding standards specify the choice of hardware design
style and coding style to get the Verilog successfully through the RTL synthesis
tool. Synthesis coding standards avoid everyone having to re-invent a successful
coding strategy from scratch, and increase the likelihood of achieving a high
quality design on the first iteration.

13-4 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Verilog Coding Standards

♦ Lexical coding standards
� Ensure consistency of Verilog code across a design team
� For example, one statement per line

♦ Synthesis coding standards
� Restrict code to use only proven styles
� For example, use synchronous design techniques
� Avoid common synthesis pitfalls
� For example, don’t use initial statements

♦ Code reviews and checklists
♦ (See the Golden Reference Guide)

Comprehensive Verilog, V6.013-6

Module 13: Project Management

May 2001

Code reviews are a good idea, especially in the early days when a team is new to
Verilog-based designs. Code reviews can help to reinforce the lessons learned
during formal training sessions.

Module 13: Project Management

Comprehensive Verilog, V6.0 13-7
May 2001

Data that Must be Managed

Notes:

Organizing the Verilog source files is only the first step towards a structured
design flow; there are many more kinds of files that need to be controlled and
maintained, as shown by the list.

13-5 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Data that Must be Managed

♦ Graphical capture data
♦ Hierarchical RTL Verilog source code
♦ Verilog behavioral models
♦ Verilog test fixtures for block level and top level
♦ Test vector files and simulation wave files
♦ Simulation, synthesis and place-and-route scripts and control
files

♦ Output report files
♦ Verilog libraries for simulation and synthesis
♦ Gate level netlists
♦ Delay files for back-annotation
♦ Physical design data

Comprehensive Verilog, V6.013-8

Module 13: Project Management

May 2001

Directory Organization

Notes:

Design data from several different tools will need to be managed. The data must
be kept consistent throughout the design flow. Support must be provided for
hierarchical verification, which may require simulating or synthesizing a lower
level block rather than the entire design, and for block-level experimentation,
which may require the creation of a temporary version of all or part of the design.
Back-copies of old versions may need to be kept.

It is important to define a directory organization at the outset of a project, and
stick to it. A possible organization is suggested above. The actual organization
used will depend to a large extent on the tools and procedures being used.

13-6 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

SynthesisSynthesis

Directory Organization

♦ Manage data from and between several tools
♦ Keep data consistent throughout design flow
♦ Maintain master and working versions

ProjectProject

ScriptsScripts
Post-
layout

simulation

Post-
layout

simulation

Verilog
source
Verilog
source

Place and
route

Place and
route

RTL
simulation
RTL

simulation

Verilog
library
Verilog
library

Verilog
library
Verilog
library

SynthesisSynthesisSynthesisSynthesis

Lower level
blocks /
experimentalRCS

Repository
RCS

Repository

Module 13: Project Management

Comprehensive Verilog, V6.0 13-9
May 2001

Design Data Control Options

Notes:

There are a number of distinct issues in managing and controlling the source data:

• Controlling access to the source code so that two parties cannot try to edit
the same file at once, and so that master data can be protected from change.

• Supporting the automatic re-compilation of the Verilog source code when a
design unit is changed (where tools require files to be compiled separately).

• Configuration management and control so that a particular version of the
complete design can be identified, frozen, and re-created at a later date.

13-7 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Design Data Control Options

♦ Controlling access to Verilog source code
� Source code control utilities (e.g. RCS)

♦ Re-compilation to maintain consistency
� Script files
� Makefiles

♦ Configuration management and control
� Verilog libraries
� Versioning and external configuration control systems

Comprehensive Verilog, V6.013-10

Module 13: Project Management

May 2001

Source code control is sometimes provided as part of the functionality of a Design
Automation Framework. Otherwise, general-purpose source code control utilities
can be used, or custom in-house utilities developed at low cost.

Most Verilog tool sets have a re-compilation facility, although sometimes with
less than the required degree of sophistication. A practical alternative is to build
an in-house re-compilation utility based on Unix make. Script files are important
throughout the design process to ensure that the process is repeatable.

Module 13: Project Management

Comprehensive Verilog, V6.0 13-11
May 2001

Functional Verification

Notes:

The High Level Design methodology depends on validating the functionality of
the design at each level of abstraction before refining the design to lower levels of
abstraction. In practice, this is achieved through extensive simulation. However,
validation through simulation is reliant on the quality of the test cases, and so
writing (high level) test cases becomes one of the major creative engineering
tasks.

RTL simulation is much faster than gate level simulation, and experience has
shown that this speed up is best exploited by simulating more test cases in the time
available, not shortening the time allotted to simulation.

13-8 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Functional Verification

♦ Extensive functional simulation is essential
♦ Depends on the quality of the test fixture
♦ Be methodical
♦ Create a verification plan
♦ Review the test bench
♦ Maybe use code coverage analysis tools
♦ Different testing methods find different kinds
of bugs

Test Fixture

Stimulus

Results

RTL
Verilog

Comprehensive Verilog, V6.013-12

Module 13: Project Management

May 2001

Software engineers have learned from long and bitter experience that proving
code through testing is not easy. A structured and methodical approach is
necessary.

Module 13: Project Management

Comprehensive Verilog, V6.0 13-13
May 2001

Methodical Testing

Notes:

When testing Verilog code, it is important to distinguish debugging from testing.
The aim of debugging is to find bugs in the source code, whereas the aim of
testing is to prove the absence of bugs.

Debugging is done by the designer himself on a block-by-block basis, using
temporary test fixtures as scaffolding. It's best to use so-called white box testing,
where you look at the fine details of the code itself both to choose test cases and to
observe the effects of test cases (using a debugger).

Testing is done on the entire design. It's best to use so-called black box testing,
where the internal details of the code are hidden during test case generation and
output checking. Test case creation should be driven from the specification, and it

13-9 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Methodical Testing

♦ First, debugging block by block
� Test individual modules or groups of modules
� White box testing – test case creation driven by the code itself
� Done by the designer

♦ Second, verifying the entire design
� Have another test fixture for the whole design
� Black box testing – test case creation driven by the specification
� Done by someone other than the designer

Comprehensive Verilog, V6.013-14

Module 13: Project Management

May 2001

is beneficial to have different parties develop the hardware design and the test
cases to ensure compliance with the specification.

Module 13: Project Management

Comprehensive Verilog, V6.0 13-15
May 2001

Gate-Level Verification

Notes:

After synthesis and/or place-and-route, the final functional verification step is to
compare the gate-level simulation results with the RTL simulation results, usually
by putting the gate-level netlist back into the RTL test fixture. The thing not to do
is to rely on using the waveform display to confirm that the simulation results are
still correct. It is notoriously easy to miss errors when scanning long waveforms
by eye. You should always automate the comparison between simulation results,
as discussed in the previous section.

Gate-level simulation is not the only method of verification. Static timing analysis
is rightly increasing in popularity as a method of verifying the timing, because it
does not rely on the completeness of a set of simulation test cases, and runs much
faster than simulation. The downside of static timing analysis is that it works on

13-10 • Comprehensive Verilog: Project Management Copyright © 2001 Doulos

Gate-Level Verification

♦ Gate level simulation
� Don’t rely on eyeballing the waveform displays
� Use the Verilog test fixture to check the outputs

♦ Static timing analysis

♦ Formal verification
� Don’t require test vectors
� Faster
� Aimed at synchronous design

Comprehensive Verilog, V6.013-16

Module 13: Project Management

May 2001

the assumption of synchronous design. If you have to deal with asynchronous
interfaces, then static timing analysis will not give you the whole truth.

Formal verification is also growing in popularity as an alternative to gate-level
simulation in some situations. For example, equivalence checking can be used to
prove the equivalence of two netlists before and after inserting test logic or clock
trees, or before and after making some minor modification to a netlist by hand.

Comprehensive Verilog, V6.0 A-1
May 2001

Appendix A
The PLI

Comprehensive Verilog, V6.0A-2

Appendix A: The PLI

May 2001

The PLI

Notes:

A-2 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The PLI

Aim
♦ To obtain an introduction to the Verilog Programming
Language Interface (PLI) and its application

Topics Covered
♦ What is the PLI?
♦ What is its purpose?
♦ How do I use it?
♦ TF, ACC and VPI routines
♦ Creating tests in C

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-3
May 2001

The PLI − Outline

Notes:

Above is the outline of this section. To understand most of the examples, you need
to have a working knowledge of the C programming language.

A-3 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The PLI – Outline

♦ Introduction
� What is it?
� Jargon

♦ The PLI and VPI Interface
� How do I write, compile and link PLI C functions?

♦ TF Routines
� Examples

♦ ACC Routines
� Examples

♦ VPI Routines
� Examples

♦ Example – PLI test fixture

Examples assume
knowledge of C
Examples assume
knowledge of C

Comprehensive Verilog, V6.0A-4

Appendix A: The PLI

May 2001

The Verilog PLI

Notes:

The Verilog Programming Language Interface (PLI) is part of the IEEE 1364
Verilog standard. It allows functions written in C to be called from and to interact
with a Verilog simulation.

Using the PLI, you can access the data structures created from the hierarchy of
instances in the design being simulated, including the structural and specify block
delays and the values of wires and registers as they change during the simulation.

A-4 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The Verilog PLI

♦ The Programming Language Interface
♦ Part of IEEE Std 1364-1995
♦ Allows C applications to interact with Verilog simulation

♦ Works on the instantiated hierarchy
♦ Works on dynamic values during simulation

Verilog

C

Compiler

Object codeCompiler

Simulator

Linked

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-5
May 2001

Purpose of the PLI

Notes:

The PLI is used to extend the capabilities of the Verilog Hardware Description
Language and of the Verilog simulator being used.

Examples of PLI applications include user-defined utilities, for example to read
and write text files; custom delay calculation and back-annotation; interfacing
graphical waveform display utilities, and providing graphical debugging
environments. The PLI can also be used as an interface to allow models written in
C or other hardware description languages such as VHDL to co-simulate with
Verilog modules.

A-5 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Purpose of the PLI

♦ For “Ordinary Users”
� User defined $tasks and $functions
� Reading and writing files, e.g. applying test vectors
� Simulation models written in C

♦ For EDA Companies
� Graphical waveform display
� Debugging environments
� Source code decompilers
� Interfaces to hardware modellers or emulators
� Code coverage utilities

♦ For Semiconductor Companies
� Delay calculation and back annotation

♦ Etc.

Comprehensive Verilog, V6.0A-6

Appendix A: The PLI

May 2001

Because the PLI is part of the Verilog standard, applications such as these can
easily be ported to work with any Verilog simulator that complies with the
Verilog standard.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-7
May 2001

PLI Applications

Notes:

PLI Application

The user creates PLI applications, which are C functions associated with user-
defined system tasks and functions, which are called from Verilog modules. PLI
applications normally call various PLI routines. (See the next page.)

The user will provide information that tells the Verilog simulator which C
function to call for a specific user-defined system task or function. This
information is necessary, because there is no default function name. For example,
naming a user-defined task $hello doesn't necessarily imply that the
corresponding C function will be called hello.

A-6 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

PLI Applications

♦ PLI application = User defined C function
� Associated with a user defined $task or $function
� Usually makes calls to PLI routines

module ...

initial

$hello;

...

module ...

initial

$hello;

...

#include <veriuser.h>

int sayhello(...) {

io_printf("Hello\n");

}

#include <veriuser.h>

int sayhello(...) {

io_printf("Hello\n");

}

Comprehensive Verilog, V6.0A-8

Appendix A: The PLI

May 2001

PLI Routines

Notes:

PLI routines

The PLI is comprised of a number of PLI routines. PLI routines are themselves C
functions that can be called from a user's PLI application. The PLI routines are
described in the IEEE 1364 standard.

PLI Routine Classes

There are three classes of PLI routine: the TF (task/function) routines, which are
utilities for use in PLI applications; the ACC (access) routines, which provide
access to the simulation data structures; and the VPI (Verilog Procedural
Interface) routines, which provide an object-oriented interface to a Verilog

A-7 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

PLI Routines

♦ PLI routine = One of a large collection of C functions that
comprise the PLI

♦ 3 classes of PLI routines
� TF (Task/Function) routines - utilities
� ACC (Access) routines
� VPI (Verilog Procedural Interface) routines

Verilog
simulator

Design data
structures

PLI
application

ACC

TF

“PLI 2.0”“PLI 2.0”

“PLI 1.0”“PLI 1.0”

or VPIor VPI

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-9
May 2001

simulation. The VPI routines are intended to supersede the TF and ACC routines
and provide a superset of their functionality.

Comprehensive Verilog, V6.0A-10

Appendix A: The PLI

May 2001

The VPI Routines

Notes:

The Verilog Procedural Interface (VPI) routines are the newest part of the PLI.
Although they are part of the IEEE 1364 standard, they are not yet supported by
all commercial simulators. They are sometimes called PLI 2.0, because they first
appeared in version 2.0 of the proposed PLI standard, as part of the Verilog
standardization process (The TF and ACC routines are sometimes known as PLI
1.0).

The intention is that the TF/ACC routines will be replaced by the VPI routines.
There will not be any further enhancements to the TF/ACC routines, and any new
functionality that is added as the Verilog language evolves (for example in the
proposed Verilog-2000 standard) will only be accessible using the VPI routines.

A-8 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The VPI Routines

♦ VPI = Verilog Procedural Interface
� Also known as “PLI 2.0”

♦ Third generation of the PLI
♦ Introduced in IEEE 1364-1995

� Not universally supported yet

♦ Superset of TF and ACC functionality
♦ Different calling mechanism
♦ The future...

� VPI is intended to replace TF/ACC
� Verilog-2000 will enhance VPI, but not TF/ACC

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-11
May 2001

The VPI routines provide a superset of the functionality of the TF and ACC
routines, but have a different calling mechanism.

Comprehensive Verilog, V6.0A-12

Appendix A: The PLI

May 2001

The PLI Interface

Notes:

The principles of the PLI interface are the same for all tool vendors. However, the
details do vary between simulators, and are described separately for various
simulators on the following pages.

• The simulation vendor provides the PLI library (i.e. TF, ACC and VPI)
routines in a compiled form, and the standard PLI C header files. Vendors
may also provide additional, proprietary header files and various templates
and utilities to help create PLI applications. Full documentation and sample
PLI applications may also be provided.

A-9 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The PLI Interface

♦ Simulation Vendor provides:
� The TF, ACC and VPI PLI library routines (compiled)
� C header files:

– Standard header files: veriuser.h, acc_user.h, vpi_user.h
– Vendor-proprietary header files

� Templates, utilities, samples, documentation

♦ You provide:
� C functions to perform the required $tasks and $functions
� Interface information
� A C compiler and linker

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-13
May 2001

• The user provides C functions to perform the required Verilog user-defined
system tasks and functions, and information about these so that the
simulator knows how and when to call them.

• The user is also responsible for compiling the C functions and possibly for
linking them to create a new, customized Verilog simulator executable.
Alternatively, the C functions may be compiled to form a shareable library
or object file. Again, the details will depend on which simulator is being
used.

Although basic information on creating PLI applications for some popular Verilog
simulators is presented in this section, you should refer to the documentation that
came with your simulator for full details.

Comprehensive Verilog, V6.0A-14

Appendix A: The PLI

May 2001

Classes of PLI Application

Notes:

Each user-defined system task or function may be associated with a number of
different C functions. Each of these plays a different role.

checktf, compiletf

A checktf (TF and ACC) or compiletf (VPI) function is used to check the number
and types of the arguments used in calls to the corresponding user-defined system
task or function in the Verilog code. In other words, it is used for syntax checking
prior to simulation. It is called once at compile-time (or when the design is loaded
for simulation) for each reference to the user-defined system task or function in
the Verilog code.

A-10 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Classes of PLI Application

♦ checktf (TF/ACC) or compiletf (VPI)
� Checks the $task/$function’s arguments
� Called once (at compile or load time) for each $task/$function
reference

♦ sizetf (not required by VCS)
� Returns the size (number of bits) returned by a $function (
� Called once (at compile or load time) for each $function reference
(ignored for $tasks)

♦ calltf
� Does the work of the application
� Called whenever $task/$function is called

♦ misctf or simulation callbacks
� Callback functions
� Called for events, timesteps, end of simulation etc.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-15
May 2001

sizetf

The sizetf function is only required for user-defined system functions. It is ignored
for user-defined tasks. It returns the number of bits returned by the corresponding
user-defined system task or function. Like a checktf or compiletf function, a sizetf
function is called once at compile-time for each reference to the corresponding
user-defined function in the Verilog code.

Synopsys VCS does not support sizetf functions. Instead, you supply the number
of bits that the user-defined system function returns as a number in the VCS PLI
table. This is described later.

calltf

The calltf function is the C function that is called when the corresponding user-
defined system task or function is called during simulation. This is the function
that does the work or the user-defined system task or function. It usually calls
other user-defined C functions and/or PLI library routines.

misctf, Simulation Callbacks

A misctf (TF and ACC) callback or Simulation Callback (VPI) function is called
implicitly before, during or after simulation, when certain simulation events
occur, such as the start or end of simulation. The simulator passes a reason flag to
the function, so that the event which caused it to be called can be determined.

Comprehensive Verilog, V6.0A-16

Appendix A: The PLI

May 2001

PLI Interfacing − Verilog-XL & ModelSim

Notes:

For Cadence Verilog-XL and Model Technology ModelSim, the user creates an
entry in a table veriusertfs. (Cadence provides a veriuser.c file for you to copy and
edit: the veriusertfs table goes in this file.) An entry must be created in the
veriusertfs table for each user-defined system task or function that can be called
from your Verilog code. The entry associates the user-defined system task or
function name with the user's PLI application(s). The final entry in veriusertfs
must be {0}.

The definition of veriusertfs is not part of the IEEE 1364-1995 standard.

A-11 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

PLI Interfacing – Verilog-XL & ModelSim

module Top;

initial

$hello;

endmodule

module Top;

initial

$hello;

endmodule

s_tfcell veriusertfs[] =

{

{ usertask, 0, 0, 0, sayhello, 0, "$hello" },

{ 0 }

};

s_tfcell veriusertfs[] =

{

{ usertask, 0, 0, 0, sayhello, 0, "$hello" },

{ 0 }

};

#include "veriuser.h"

int sayhello(int data, int reason)

{

io_printf("Hello\n");

}

#include "veriuser.h"

int sayhello(int data, int reason)

{

io_printf("Hello\n");

}

Final entry must be {0}Final entry must be {0}

calltf functioncalltf function

C function nameC function name

User-defined system task nameUser-defined system task name

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-17
May 2001

In the example shown, the user-defined system task $hello is associated in the
veriusertfs table with the calltf application sayhello. This in turn calls the TF
library routine, io_printf.

Comprehensive Verilog, V6.0A-18

Appendix A: The PLI

May 2001

veriusertfs (Verilog-XL and ModelSim)

Notes:

The slide above shows the format of the veriusertfs table, which is used by
Verilog-XL and ModelSim.

If a field is not required, use the value 0. The final record in the table must be {0}.

The data field can be used if several user-defined system tasks or functions call
the same C function: the function's data argument can then indicate which $task or
$function was called.

The three final entries in each field should usually be set to 1, 0 and 0 respectively.
These fields are proprietary to Cadence. For details, see Cadence's documentation.

A-12 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

veriusertfs (Verilog-XL and ModelSim)

s_tfcell veriusertfs[] = {

{usertask,

data,

checktf,

sizetf,

calltf,

misctf

"$tfname",

1,

0,

0},

...

{0}

}

s_tfcell veriusertfs[] = {

{usertask,

data,

checktf,

sizetf,

calltf,

misctf

"$tfname",

1,

0,

0},

...

{0}

}

or userfunctionor userfunction

data argument valuedata argument value

User's PLI applicationsUser's PLI applications

User-defined system task/function nameUser-defined system task/function name

Proprietary to
Verilog-XL
Proprietary to
Verilog-XL

Any field may be left 0, if not requiredAny field may be left 0, if not required

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-19
May 2001

Running PLI Applications

Notes:

Verilog-XL

Cadence provides a utility, vconfig, which is used to create a script cr_vlog, which
in turn is used to compile the user's C functions and customized veriuser.c and link
them with object files supplied by Cadence to form a custom Verilog-XL
simulator. This custom simulator is then used to perform simulations. In the
example, the customized simulator is called my_verilog. This program is run with
the exactly the same command-line options and switches as the standard Verilog-
XL program.

A-13 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Running PLI Applications

♦ Verilog-XL

♦ ModelSim

♦ Or ... vlog file.v
vsim

my_verilog Top.v

Run vconfig to create my_verilogRun vconfig to create my_verilog

[vsim}

.

.

.

Veriuser = hello.so

}

[vsim}

.

.

.

Veriuser = hello.so

}

vsim -pli hello.so

modelsim.inimodelsim.ini

shareable object fileshareable object file

Comprehensive Verilog, V6.0A-20

Appendix A: The PLI

May 2001

ModelSim

With ModelSim, you must compile your C code and create a shareable object file
(Solaris and Linux), shared object library (HP-UX) or Dynamic Link Library
(Microsoft Windows). You must tell ModelSim about this file when you run the
simulator. You can do this using the command-line switch -pli, or by editing the
modelsim.ini file and including the Veriuser field. You compile your Verilog code
and run the simulator in the normal way.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-21
May 2001

PLI Interfacing − VCS

Notes:

The mechanism for linking PLI routines with Synopsys VCS is slightly different
from that for Verilog-XL and ModelSim. (If you have existing PLI applications
that were written for use with these tools, there is a utility supplied with VCS to
convert existing veriusertfs tables to VCS tables).

For VCS, the user creates an entry in a PLI table. Unlike the veriusertfs table, this
is not C syntax, but a separate text file. There is one table entry for each user-
defined system task or function that can be called from Verilog code. The entry
associates the task or function name with the user's PLI application(s).

A-14 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

PLI Interfacing – VCS

♦ Source Files

♦ Running VCS

$hello call=sayhello$hello call=sayhello

#include "vcsuser.h"

int sayhello(int data, int reason)

{

io_printf("Hello\n");

}

#include "vcsuser.h"

int sayhello(int data, int reason)

{

io_printf("Hello\n");

}

module Top;

initial

$hello;

endmodule

module Top;

initial

$hello;

endmodule

C function nameC function name

User-defined system task nameUser-defined system task name

vcs ... -P file.tab file.v file.c

calltf functioncalltf function

Table fileTable file

Comprehensive Verilog, V6.0A-22

Appendix A: The PLI

May 2001

The table is then referenced on the VCS command line using the option -P. Also
included on the command line is the name of the file(s) containing the user's C
function(s). The C functions are compiled along with the Verilog code.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-23
May 2001

The VCS PLI Table

Notes:

The slide above shows examples of VCS PLI table entries.

Each entry starts with the name of the user-defined system task or function. There
follows one or more PLI or ACC specifications.

call=function_name identifies the calltf function corresponding to the user-
defined system task or function. Similarly, check=function_name,
size=function_name and misc=function_name identify the checktf, sizetf and
misctf functions respectively.

A-15 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The VCS PLI Table

$VerilogTaskName call=CFunctionName

$task call=func1 check=func2 misc=func3

$function call=callFunction size=1

$task1 call=sameFunction data=1

$task2 call=sameFunction data=2

$task3 call=func3 acc+=rw:mod1+

$task4 call=func4 acc+=cbk:*

misctfmisctf

checktfchecktf

data argument valuesdata argument values

ACC “capabilities”ACC “capabilities”

calltfcalltf

Comprehensive Verilog, V6.0A-24

Appendix A: The PLI

May 2001

data=value provides a value for the data argument for the PLI application. This
could be used if the same C function is called for two different user-defined
system tasks, as described earlier.

The ACC specifications enable or disable ACC access to specified objects in the
design. For example, acc+=rw:mod1+ enables ACC read/write access to registers
and nets in the module mod1 and its children. acc+=cbk:* enables callbacks on all
objects in the design. These and other ACC specifications are described fully in
the VCS documentation.

ACC capabilities can also be specified on the VCS command-line. This is
described in the VCS documentation.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-25
May 2001

Interfacing VPI Applications

Notes:

To interface a VPI PLI application to a Verilog simulator, you need to create a
registration function for the application and include the registration function in the
vlog_startup_routines table.

The registration function should create a s_vpi_systf_data struct and initialize it.
This is analogous to creating an entry in the veriusertfs table.

The registration function registers the VPI application by calling
vpi_register_systf and passing a pointer to the s_vpi_systf_data struct.

A-16 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Interfacing VPI Applications

#include "vpi_user.h"

void hello_vpi_register(void)

{

s_vpi_systf_data tf_data;

tf_data.type = vpiSysTask;

tf_data.sysfunctype = NULL,

tf_data.tfname = "$hello";

tf_data.calltf = vpi_hello_call;

tf_data.compiletf = NULL;

tf_data.sizetf = NULL;

tf_data.user_data = NULL;

vpi_register_systf(&tf_data);

}

Each VPI PLI application
requires a registration function
Each VPI PLI application

requires a registration function

Register the PLI applicationRegister the PLI application

Comprehensive Verilog, V6.0A-26

Appendix A: The PLI

May 2001

vlog_startup_routines

Notes:

vlog_startup_routines is a zero-terminated array of functions. This is required by
the IEEE standard. The simulator uses the array to call all the registration
functions in it. It is therefore important that all registration functions are included
in this array.

A-17 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

vlog_startup_routines

extern void hello_vpi_register(void);

void (*vlog_startup_routines[])() =

{

hello_vpi_register,

0

}

vlog_startup_routines is requiredvlog_startup_routines is required

Array of registration functionsArray of registration functions

The simulator calls the registration functionsThe simulator calls the registration functions

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-27
May 2001

TF/ACC PLI Application Arguments

Notes:

This and the following page describe the arguments used by TF and ACC PLI
applications.

C header files

PLI applications require certain C header files (these are provided by the
simulation tool vendor.) For Verilog-XL and Modelsim, include veriuser.h. For
VCS, include vcsuser.h instead. (vcsuser.h is the same as veriuser.h) If you are
using the ACC routines with any vendor, include acc_user.h. Vendors may also
have proprietary header files, for example to define proprietary extensions to the
PLI.

A-18 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

TF/ACC PLI Application Arguments

int mySIZE (int data, int reason)
{
...
}

int mySIZE (int data, int reason)
{
...
}

#include <veriuser.h>
#include <acc_user.h>
#include <veriuser.h>
#include <acc_user.h>

int myCHECK (int data, int reason)
{
...
}

int myCHECK (int data, int reason)
{
...
}

int myCALL (int data, int reason)
{
...
}

int myCALL (int data, int reason)
{
...
}

"vcsuser.h" for VCS"vcsuser.h" for VCS

If using ACC routinesIf using ACC routines

Always reason_checktfAlways reason_checktf

Always reason_sizetfAlways reason_sizetf

Always reason_calltfAlways reason_calltf

Which $task or $function
was called

Which $task or $function
was called

or voidor void

Comprehensive Verilog, V6.0A-28

Appendix A: The PLI

May 2001

PLI applications return an int and have two arguments, data and reason. (misctf
functions also have a third argument, paramvc, which is described on the next
page). The return value is only used by sizetf functions, so it is common practice
to declare other application routines as returning void.

data

The data argument is used to determine which user-defined system task or
function has caused the application to be called. This can be used when the same
PLI application is called by a number of different user-defined system tasks and
functions.

reason

The reason argument indicates why the PLI application was called. The most
common use for the reason argument is so that a misctf PLI application can
determine which simulation event has initiated the callback.

Note that for may PLI applications the arguments' values are not used. In
particular, the reason argument is always reason_chectf for a checktf application;
reason_sizetf for a sizetf application; and reason_calltf for a calltf application.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-29
May 2001

TF/ACC misctf Application Arguments

Notes:

misctf applications have the data and reason arguments like other applications.
They also have a third argument, paramvc.

The reason argument is important for a misctf application is because there are
many different simulation events that could cause the callback and the intended
reason must be detected. Note that every misctf application is called for every
possible callback event - there is no way to filter out unwanted events, except
within the misctf routine itself.

A-19 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

TF/ACC misctf Application Arguments

int myMISC (int data, int reason, int paramvc)
{
...
}

int myMISC (int data, int reason, int paramvc)
{
...
}

Reason for the callbackReason for the callback

Which parameter changed,
if using tf_asynchon()

Which parameter changed,
if using tf_asynchon()

or voidor void

End of compilation/start of simulation reason_endofcompile
Simulation event scheduled with tf_setdelay reason_reactivate
Execution of $stop reason_interactive
Execution of $finish reason_finish
...

Callback reasons

Comprehensive Verilog, V6.0A-30

Appendix A: The PLI

May 2001

tf_asynchon

The PLI routine tf_asynchon is used to force callbacks when the values of
specified wires and registers change during simulation. In this case a misctf
application would be called with a reason reason_paramvc or reason_paramdrc,
and the paramvc argument would indicate which object's value has changed.
There is an example of this mechanism on a later slide.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-31
May 2001

The TF/ACC data Argument

Notes:

In the Verilog code opposite there are calls to two user-defined system tasks, $one
and $two. The same C function, count, is to be executed whenever either of these
system tasks is called. Count is associated with $one and $two in the veriusertfs
table (for Verilog-XL and ModelSim) or the PLI table (VCS). The table tells the
simulator that the C function count should be called with a data argument value of
1 for $one and 2 for $two.

The VCS PLI table is not shown in the diagram. It would have entries like these:

$one call=count data=1
$two call=count data=2

A-20 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The TF/ACC data Argument

{usertask,1,0,0,count,0,”$one”,0,0,0}

{usertask,2,0,0,count,0,”$two”,0,0,0}

{usertask,1,0,0,count,0,”$one”,0,0,0}

{usertask,2,0,0,count,0,”$two”,0,0,0}

int count (int data, int reason)

{

if (data == 1)

io_printf("$one was called\n");

else if (data == 2)
io_printf("$two was called\n");

else

io_printf("Ugh?!\n");

}

int count (int data, int reason)

{

if (data == 1)

io_printf("$one was called\n");

else if (data == 2)
io_printf("$two was called\n");

else

io_printf("Ugh?!\n");

}

veriusertfsveriusertfs “For $one, call count
with data = 1”

“For $one, call count
with data = 1”

“For $two, call count
with data = 2”

“For $two, call count
with data = 2”

calltfcalltf

initial

begin

$one;

$two;

end

initial

begin

$one;

$two;

end

Comprehensive Verilog, V6.0A-32

Appendix A: The PLI

May 2001

The VPI user_data Field

Notes:

The VPI user_data field works in a similar way to the TF/ACC data argument.
The main difference is that user_data is a pointer to a char. This means that, unlike
the TF/ACC data field, which is limited to being a 32-bit integer, the VPI
user_data field can be a string of arbitrary length.

In the example above, the same C function, count, is called whenever either of the
user-defined systems $one or $two is called. If $one is called, the user_data
argument will be the single-character string "1"; if $two is called user_data will be
"2".

Note that because user_data is a string, we could have used the actual names of the
user-defined system tasks, i.e. $one and $two respectively.

A-21 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

The VPI user_data Field

systf_data_one.tfname = "$one";

systf_data_one.user_data = "1";

systf_data_one.tfname = "$one";

systf_data_one.user_data = "1";

int count (char *user_data)

{

if (!strcmp(user_data, "1"))

vpi_printf("$one was called\n");

else if (!strcmp(user_data, "2"))

vpi_printf("$two was called\n");

else

vpi_printf("Ugh?!\n");

}

int count (char *user_data)

{

if (!strcmp(user_data, "1"))

vpi_printf("$one was called\n");

else if (!strcmp(user_data, "2"))

vpi_printf("$two was called\n");

else

vpi_printf("Ugh?!\n");

}

“For $one, call count with
user_data = "1"”

“For $one, call count with
user_data = "1"”

calltfcalltf

systf_data_one.tfname = "$two";

systf_data_one.user_data = "2";

systf_data_one.tfname = "$two";

systf_data_one.user_data = "2";

“For $two, call count with
user_data = "2"”

“For $two, call count with
user_data = "2"”

initial

begin

$one;

$two;

end

initial

begin

$one;

$two;

end

Registration functionsRegistration functions

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-33
May 2001

systf_data_one.user_data = "1";
systf_data_two.user_data = "2";
int count (char *user_data)
{

if (!strcmp(user_data, "$one"))
vpi_printf("$one was called\n");

else if (!strcmp(user_data, "$two"))
vpi_printf("$two was called\n");

else
vpi_printf("Ugh?!\n");

}

Comprehensive Verilog, V6.0A-34

Appendix A: The PLI

May 2001

TF Routines

Notes:

The TF (utility) PLI routines are used to manipulate the parameters of user-
defined tasks and functions, and to synchronize interaction between a task and the
simulator. They do not access directly the data structures containing information
about the design.

The next few slides present examples of TF routines.

A-22 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

TF Routines

♦ “Utilities”
♦ Act only on their arguments, not on the Verilog structures
♦ Examples

� Manipulate task parameters
� Return user defined function value
� Synchronize with simulator
� Start and stop simulation

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-35
May 2001

System Task vs. PLI Application
Arguments

Notes:

Note that PLI applications (i.e. the C functions) always have two or three
arguments (as described earlier), irrespective of the number of parameters of the
corresponding user-defined system task. These parameters are passed to the C
application using appropriate TF routines. For example the function tf_getp
obtains the value of a parameter, as shown opposite. A further example is
presented on the next slide.

A-23 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

initial

$repeat_hello(5);

initial

$repeat_hello(5);

int repeat_hello (int data, int reason)
{
int n = tf_getp(1);

while (n--)
io_printf("Hello\n");

}

int repeat_hello (int data, int reason)
{

int n = tf_getp(1);

while (n--)
io_printf("Hello\n");

}

System Task vs. PLI Application Arguments

♦ Verilog system task parameters != PLI application arguments

One argument (“parameter”)One argument (“parameter”)

Always has these two argumentsAlways has these two arguments

Use tf_getp to get argument valueUse tf_getp to get argument value

Comprehensive Verilog, V6.0A-36

Appendix A: The PLI

May 2001

System Task String Parameters

Notes:

This example shows how strings can be passed from a call to a user-defined
system task to a PLI application. The example also shows how the data argument
can be used to identify which user-defined system task caused the PLI application
to be called.

The TF routine tf_getp returns the value of a parameter to the user-defined system
task that caused the C function to be called. In this example tf_getp returns a
pointer to a string, which will be the value of the first parameter of $one or $two.

A-24 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

int count (int data, int reason)

{

char *text;

if (data == 1) { /* Must be $one */

text = (char *)tf_getp(1);

io_printf("$one says \"%s\"\n", text);
}

else if (data == 2) { /* Must be $two */

text = (char *)tf_getp(1);

io_printf("$two says \"%s\"\n", text);

}

else /* Can't happen... */

io_printf("Ugh?!\n");

}

System Task String Parameters

{usertask,1,0,0,count,0,"$one",0,0,0},

{usertask,2,0,0,count,0,"$two",0,0,0}

{usertask,1,0,0,count,0,"$one",0,0,0},

{usertask,2,0,0,count,0,"$two",0,0,0}

initial

begin

$one("Hello");

$two("Goodbye");

end

initial

begin

$one("Hello");

$two("Goodbye");

end

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-37
May 2001

Parameter

Don't confuse the term "parameter" when used of the parameters of a task with
Verilog parameters, which are runtime constants.

Comprehensive Verilog, V6.0A-38

Appendix A: The PLI

May 2001

Passing Verilog Values

Notes:

This example shows how the TF routines are used to retrieve and modify the user-
defined system task or function's parameters.

The user-defined system task, $copy, prints the value of the first parameter and
copies it to the second parameter, after a delay.

The C function copy_CALL is called when $copy is called. tf_strgetp returns a
pointer to a string containing the value of a, the first parameter of $copy. The
string contains the value of a in binary format (c.f. the format specifier %b for
$display). The format is specified by the value of the second argument to
tf_strgetp, FORMAT, which has the value 'b'.

A-25 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Passing Verilog Values

$copy(a, b);$copy(a, b);

#include "veriuser.h" /* "vcsuser.h" for VCS */

#define BITLENGTH 1

#define FORMAT 'b'

#define DELAY 1

#define TYPE 0

int copy_CALL (int data, int reason)

{

char* value;

value = tf_strgetp(1,FORMAT);

io_printf ("length=%d, value=%s\n", tf_sizep(1), value);

tf_strdelputp(2, BITLENGTH, FORMAT, value, DELAY, TYPE);

}

Size (bits) of
first parameter
Size (bits) of
first parameter

Schedule change second parameterSchedule change second parameter

Get first $copy parameter as binary stringGet first $copy parameter as binary string

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-39
May 2001

io_printf prints the number of bits in the first parameter, and the value as a string.
The syntax of io_printf is identical to that of the standard C function printf, but it
causes the text to be added to the Verilog log file as well as the standard output.

Finally, tf_strdelputp copies the value of a to the second parameter of $copy, b,
after a delay of DELAY (1). The TYPE (0) indicates that inertial delay is to be
used.

Comprehensive Verilog, V6.0A-40

Appendix A: The PLI

May 2001

Returning Values from Functions

Notes:

This example shows the PLI routine tf_putp being used to return a value from a
user-defined system function. The function $scramble returns the value of its
parameter having undergone bitwise inversion.

Note that parameter 0 is the function's return value. Parameter 1 is the function's
first parameter etc.

A sizetf function can be specified, so that the Verilog compiler can check that the
function is being called correctly. (In VCS, you specify the number of bits in the
PLI table.)

A-26 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Returning Values from Functions

int scramble_CALL (int data, int reason)
{

int value;
value = tf_getp(1);
value = ~value;
tf_putp(0,value);

}

int scramble_CALL (int data, int reason)
{

int value;
value = tf_getp(1);
value = ~value;
tf_putp(0,value);

}

$scramble call=scramble_CALL size=32$scramble call=scramble_CALL size=32

{userfunction, 0, scramble_CHECK, scramble_SIZE,
scramble_CALL, 0, "$scramble", 0}

{userfunction, 0, scramble_CHECK, scramble_SIZE,
scramble_CALL, 0, "$scramble", 0}

b = $scramble(a);b = $scramble(a);

VCS PLI tableVCS PLI table

veriusertfsveriusertfs

Parameter 0 is function return valueParameter 0 is function return value

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-41
May 2001

checktf Example

Notes:

The function copy_CHECK is defined to be the checktf routine for $copy in the
veriusertfs table (Verilog-XL or ModelSim) or PLI table (VCS).

The Verilog compiler will call copy_CHECK once at compile time for each
reference to $copy in the Verilog code. Its purpose is to check that the person who
wrote the Verilog code has used $copy correctly - that it has two scalar
parameters, the second of which must be able to be written to.

The example is continued on the following page.

A-27 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

checktf Example

$copy(a,b);$copy(a,b);

{usertask, 0, copy_CHECK, 0, copy_CALL, 0, "$copy",0}{usertask, 0, copy_CHECK, 0, copy_CALL, 0, "$copy",0}

$copy call=copy_CALL check=copy_CHECK$copy call=copy_CALL check=copy_CHECK

int copy_CHECK (int data, int reason)
{
if (tfnump() != 2)

tf_error("$copy should have exactly two parameters");

...

}

int copy_CHECK (int data, int reason)
{

if (tfnump() != 2)
tf_error("$copy should have exactly two parameters");

...

}

Number of parametersNumber of parameters

VCS PLI tableVCS PLI table

veriusertfsveriusertfs

checktf functionchecktf function

Comprehensive Verilog, V6.0A-42

Appendix A: The PLI

May 2001

Checking Parameters

Notes:

copy_CHECK calls various TF routines to do its work:

• tf_nump returns the number of parameters used in the reference to $copy.

• tf_sizep(N) returns the size in bits for the Nth parameter of $copy.

• tf_typep(N) returns the type of the Nth parameter. The value tf_readwrite
indicates that the parameter is a register type. The other values that can be
returned are tf_nullparam, tf_string, tf_readonly, tf_readonlyreal,
tf_readwritereal. These values are described in the IEEE 1364-1995
manual.

A-28 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Checking Parameters

int copy_CHECK (int data, int reason)
{

/* Check that $copy has two parameters */
if (tf_nump() != 2)
tf_error("$copy should have exactly two parameters");

else {

/* Check that both parameters are 1-bit */
if (tf_sizep(1) != 1)

tf_error("First parameter to $copy should be scalar");
if (tf_sizep(2) != 1)

tf_error("Second parameter to $copy should be scalar");

/* Check second parameter is a reg)*/
else if (tf_typep(2) != tf_readwrite)

tf_error("Second parameter to $copy should be a reg");
}

}

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-43
May 2001

misctf Callbacks

Notes:

If a misctf routine is associated with a user-defined system task or function, it may
be called for a number of reasons. For example, when simulation starts or finishes
or when a $stop is executed. The reason is passed as the second argument. When
writing a misctf routine it is important to check the reason, and act appropriately.

By calling tf_setdelay, it is possible for a PLI application to cause the misctf
routine to be called after a specified delay. The reason will be reason_reactivate.
This mechanism can be used to generate test stimulus in a PLI application.

Here, the task $clockgen is called once. It retrieves the value of the clock period
from the first parameter, and stores it in the global variable clockgen_period. The

A-29 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

misctf Callbacks

$clockgen(Clock, `PERIOD);$clockgen(Clock, `PERIOD);

{usertask, 0, 0, 0, clockgen_CALL, clockgen_MISC, "$clockgen",0}{usertask, 0, 0, 0, clockgen_CALL, clockgen_MISC, "$clockgen",0}

$clockgen call=clockgen_CALL misc=clockgen_MISC$clockgen call=clockgen_CALL misc=clockgen_MISC

int clockgen_period;

int clockgen_CALL (int data, int reason)
{
clockgen_period = tf_getp(2);
tf_setdelay(0); /* Cause clockgen_MISC callback */

}

int clockgen_MISC (int data, int reason, int paramvc)
{
...

}

int clockgen_period;

int clockgen_CALL (int data, int reason)
{
clockgen_period = tf_getp(2);
tf_setdelay(0); /* Cause clockgen_MISC callback */

}

int clockgen_MISC (int data, int reason, int paramvc)
{
...

}

VCS PLI tableVCS PLI table

veriusertfsveriusertfs

miscf functionmiscf function

Called once onlyCalled once only

Comprehensive Verilog, V6.0A-44

Appendix A: The PLI

May 2001

call to tf_setdelay will cause clockgen_MISC to be called by the simulator at the
end of the current simulation time step.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-45
May 2001

misctf example

Notes:

clockgen_MISC schedules two events on the first parameter to $clockgen (i.e the
Clock reg). The first sets the clock to 0 at the current time (delay of 0); the second
sets the clock to 1 after half a period. The delay type argument is 1, indicating
"modified transport delay". In other words, any future events on the clock are
cancelled.

Having scheduled these two events, clockgen_MISC then causes itself to be called
again after a delay corresponding to the clock period.

Note that clockgen_MISC only performs these actions if the reason for it being
called is reason_reactivate (i.e. by a previous call to tf_setdelay). It is very
important to check the reason in a misctf application.

A-30 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

misctf example

#define BITLENGTH 1
#define BINARY 'b'
#define DELAYTYPE 1

extern int clockgen_period;

int clockgen_MISC (int data, int reason, int paramvc)
{
if (reason == reason_reactivate) {
tf_strdelputp(1, BITLENGTH, BINARY,

"0", 0, DELAYTYPE);
tf_strdelputp(1, BITLENGTH, BINARY,

"1", clockgen_period/2, DELAYTYPE);
tf_setdelay(clockgen_period);

}
}

Must check the reasonMust check the reason

Force another callback in one clock period's timeForce another callback in one clock period's time

Comprehensive Verilog, V6.0A-46

Appendix A: The PLI

May 2001

Value Change Detection

Notes:

This example shows that a user-defined system task can be made to be called
asynchronously, like the built-in system task $monitor.

The C function $my_monitor is called only once, and it calls tf_asynchon. This
causes the misctf function mymonitor_MISC to be called whenever the value of a
or b changes. (a and b are the parameters in the call to $my_monitor.)

When mymonitor _MISC is called in this way, the reason argument will be the
pre-defined value reason_paramvc, indicating a parameter has changed value, and
the paramvc argument will indicate which of a or b has changed.

A-31 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Value Change Detection

$my_monitor(a, b);$my_monitor(a, b);

{usertask, 0, mymonitor_CHECK, 0, mymonitor_CALL, mymonitor_MISC,
"$my_monitor", 0}

{usertask, 0, mymonitor_CHECK, 0, mymonitor_CALL, mymonitor_MISC,
"$my_monitor", 0}

int mymonitor_CALL (int data, int reason)
{

...
tf_asynchon();
...

}

int mymonitor_MISC (int data, int reason, int paramvc)
{

if (reason == reason_paramvc)
io_printf ("Callback: param(%d)=%s\n",

paramvc, tf_strgetp(paramvc,FORMAT));
}

int mymonitor_CALL (int data, int reason)
{

...
tf_asynchon();
...

}

int mymonitor_MISC (int data, int reason, int paramvc)
{

if (reason == reason_paramvc)
io_printf ("Callback: param(%d)=%s\n",

paramvc, tf_strgetp(paramvc,FORMAT));
}

Forces asynchronous callbacks whenever a, b changeForces asynchronous callbacks whenever a, b change

Which parameter has changed?Which parameter has changed?

tf_asynchon callbacktf_asynchon callback

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-47
May 2001

Other TF Routines

Notes:

Here are some further examples of TF routines.

tf_warning and tf_error report warnings and errors in the same format as the
simulator usually reports warnings and errors.

tf_dostop and tf_dofinish have the same effect as the Verilog built in system tasks
$stop and $finish.

Many TF routines come in pairs. For example tf_getp and tf_igetp. The latter form
enables one PLI application to use the parameters passed to another PLI
application. For example, $bye could find out the values of $hello's parameters,
even though they have different calltf functions.

A-32 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Other TF Routines

♦ Get simulation time…

♦ Error and warning messages

♦ Controlling simulation…

♦ Getting information about other user defined tasks…

tf_getlongtime()tf_getlongtime()

tf_error("An error has occurred");
tf_warning("You ought to know that ...");

tf_error("An error has occurred");
tf_warning("You ought to know that ...");

tf_dostop()
tf_dofinish()

tf_dostop()
tf_dofinish()

char* hello_call_ptr;

hello_CALL (int data, int reason)
{... hello_call_ptr = tf_getinstance(); ...}

bye_CALL (int data, int reason)
{... tf_igetp(1, hello_call_ptr); ...}

char* hello_call_ptr;

hello_CALL (int data, int reason)
{... hello_call_ptr = tf_getinstance(); ...}

bye_CALL (int data, int reason)
{... tf_igetp(1, hello_call_ptr); ...}

Get $hello’s
first parameter
Get $hello’s
first parameter

Comprehensive Verilog, V6.0A-48

Appendix A: The PLI

May 2001

Full details of all the TF routines can be found in the IEEE 1364 LRM. They may
also be described in the documentation for the Verilog simulator you are using.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-49
May 2001

ACC Routines

Notes:

The ACC routines are used to access the data structures of a compiled Verilog
hierarchy during simulation. The ACC routines are able to do this directly. With
the TF routines, values have to be passed to the PLI application using user-defined
system task parameters.

The ACC routines make extensive use of handles. Once the handle of an object
such as a net or a module is known, information about that object can be obtained.

Some simulators require special command line parameters or configuration
options to enable the ACC routines to be used. For example, Synopsys VCS
requires the +acc command line option or ACC specifications in the PLI table.

A-33 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Verilog
simulator

Design data
structures

PLI
application

ACC

TF

Direct access to design dataDirect access to design data

ACC Routines

♦ Give access to Verilog data structures
♦ Make extensive use of handles
♦ Compile with +acc flag or ACC specifications in PLI table
(VCS)

Comprehensive Verilog, V6.0A-50

Appendix A: The PLI

May 2001

You will need to refer to the documentation for the simulator you are using for
details.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-51
May 2001

Simple ACC Example

Notes:

The example above shows a simple ACC PLI application. Each application should
first call acc_initialize. Before finishing, it should call acc_close() to free memory
etc.

The application gets the handle corresponding to the name top.a and uses it to
obtain the full hierarchical name and the value of that object. These are then
printed.

A-34 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Simple ACC Example

#include "veriuser.h"

#include "acc_user.h"

int scan (int data, int reason)

{

handle a_handle;

char *name, *value;

acc_initialize();

a_handle = acc_handle_by_name("top.a", null);

name = acc_fetch_fullname(a_handle);

value = acc_fetch_value(a_handle, "%b");

io_printf ("Scan: Name=%s, value=%s\n", name, value);

acc_close();

}

ACC headerACC header

Initialize ACCInitialize ACC

Reset ACCReset ACC
Use ACC and TF togetherUse ACC and TF together

Obtain handleObtain handle

Use handle to
obtain data
Use handle to
obtain data

Comprehensive Verilog, V6.0A-52

Appendix A: The PLI

May 2001

ACC Routine Families

Notes:

There are various families of ACC routines. Full details of all the ACC routines
can be found in the IEEE 1364 LRM. They may also be described in the
documentation for the Verilog simulator you are using.

A-35 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

ACC Routine Families

♦ Fetching information from the design hierarchy

♦ Getting the handles of objects

♦ Iterating through sets of related objects

♦ Modifying the values of objects

♦ Initialization, configuration, release, version etc.

acc_fetch_*()acc_fetch_*()

acc_handle_*()acc_handle_*()

acc_next_*()acc_next_*()

acc_append_*()

acc_replace_*()

acc_set_*()

acc_append_*()

acc_replace_*()

acc_set_*()

acc_*()acc_*()

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-53
May 2001

Iteration

Notes:

Iteration is common when using ACC routines. This example shows how handles
are used to iterate through a number of similar objects. The function scan prints
the names of all the nets in the module top.

A-36 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Iteration

int scan (int data, int reason)
{

handle m_handle, net_handle;
char *name;

acc_initialize();

m_handle = acc_handle_by_name("top", null);
net_handle = null;
while (net_handle = acc_next_net(m_handle, net_handle)) {

name = acc_fetch_fullname(net_handle);
io_printf ("Net=%s\n", name);

}

acc_close();
}

int scan (int data, int reason)
{
handle m_handle, net_handle;
char *name;

acc_initialize();

m_handle = acc_handle_by_name("top", null);
net_handle = null;
while (net_handle = acc_next_net(m_handle, net_handle)) {

name = acc_fetch_fullname(net_handle);
io_printf ("Net=%s\n", name);

}

acc_close();
}

module top;
wire w1, w2, w3;
...

endmodule

module top;
wire w1, w2, w3;
...

endmodule

Lists all nets in "top"Lists all nets in "top"

Comprehensive Verilog, V6.0A-54

Appendix A: The PLI

May 2001

Replacing Delays

Notes:

This example shows that the PLI can be used not only to find information about
the data structures, but to make changes there.

By default, all built-in and user-defined primitives gave a delay of 0. This
application changes the delays in a module to a rise delay of 10 and a fall delay of
15.

(For Synopsys VCS, the PLI table entry acc+=gate:* enables back-annotation of
gate delays for all modules in the design.)

A-37 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Replacing Delays

$annotate call=annotate acc+=gate:*$annotate call=annotate acc+=gate:*

int annotate (int data, int reason)

{

handle m_handle, p_handle;

double tplh = 10.0, tphl = 15.0;

...

/* For single delay values... */

acc_configure(accMinTypMaxDelays, "false");

p_handle = null;

while (p_handle = acc_next_primitive(m_handle,p_handle))

acc_replace_delays(p_handle, tplh, tphl);

...

}

VCS PLI TableVCS PLI Table

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-55
May 2001

Value Change Link (VCL) Routines

Notes:

The Value Change Link routines are part of the ACC routines. They allow a PLI
application to monitor simulation value changes of selected objects.

This example shows how to write your own version of $monitor. The scan
function calls acc_vcl_add for all the nets in the module, and this causes the C
function mymonitor to be called whenever the value of one of these nets changes
during simulation.

A-38 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Value Change Link (VCL) Routines

int mymonitor (p_vc_record vc_record)
{
char txt;
switch (vc_record->out_value.logic_value) {

case vcl0: txt = '0'; break;
case vcl1: txt = '1'; break;
default: txt = 'X'; break;

}
io_printf ("My Monitor! Name=%s NewValue=%c\n",

vc_record->user_data, txt);
}

int scan (int data, int reason)
{
handle m_handle, net_handle;
char *name;
...
net_handle = null;
while (net_handle = acc_next_net(m_handle, net_handle, null)) {

name = acc_fetch_fullname(net_handle);
acc_vcl_add(net_handle, mymonitor, name, vcl_verilog_logic);

}
...

}

Comprehensive Verilog, V6.0A-56

Appendix A: The PLI

May 2001

VPI Example

Notes:

In this and the following slides, a simple VPI application is presented. This
example simply prints some text, including a string which has been passed as an
argument to the user-defined system task $hello.

The general outline of any VPI application is the same as is outlined here. First,
the handle to the specific user-defined system task call is obtained. This handle is
then used to obtain the handle to the user-defined system task call's arguments.
Now the argument values can be retrieved and the actioned.

A-39 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

VPI Example

int vpi_hello_call (char *user_data)

{

/* Declarations */

...

/* Obtain a handle to the system task instance */

...

/* Use system task handle to obtain handle to arguments */

...

/* Obtain handles to arguments - and do something with them! */

...

return(0);

};

initial

$hello("Fred");

initial

$hello("Fred");

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-57
May 2001

VPI Handles

Notes:

The VPI relies heavily on the use of handles. The function vpi_handle returns a
value of type vpiHandle. The value is NULL if there is an error.

The following call gets the handle to the specific invocation of $hello that caused
the application to be executed:

systf_handle = vpi_handle(vpiSysTfCall, NULL)

Then the handle obtained is used to obtain the handle to the arguments:

arg_iterator = vpi_iterate(vpiArgument, systf_handle)

A-40 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

VPI Handles

int vpi_hello_call (char *user_data)
{
/* Declarations */
vpiHandle systf_handle, arg_iterator;
s_vpi_value current_value;

/* Obtain a handle to the system task instance */
if ((systf_handle = vpi_handle(vpiSysTfCall, NULL)) == NULL) {

vpi_printf("ERROR: $hello failed to obtain systf handle\n");
tf_dofinish(); /* abort simulation */
return(0);

}

/* Use system task handle to obtain handle to arguments */
if ((arg_iterator = vpi_iterate(vpiArgument, systf_handle))

== NULL) {
vpi_printf("ERROR: $hello failed to obtain argument handle\n"

" Should have exactly one argument.");
tf_dofinish(); /* abort simulation */
return(0);

}
...

Comprehensive Verilog, V6.0A-58

Appendix A: The PLI

May 2001

This would return NULL if there were no arguments:

$hello;

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-59
May 2001

VPI Arguments

Notes:

Having obtained the handle to the arguments, you can iterate through them using
vpi_scan. In this example, there is only one argument, so vpi_scan is called just
once to obtain the handle for the one and only argument.

To get the value of the argument (which is a Verilog string) in the format of a null-
terminated C string, the function vpi_get_value is called. This requires two
arguments: the argument handle and a pointer to a struct.

typedef struct t_vpi_value {
int format;
union {

char *str;
int scalar;

A-41 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

VPI Arguments

...

/* Obtain handle to first argument */

arg_handle = vpi_scan(arg_iterator);

/* Get the value of the string */

current_value.format = vpiStringVal;

vpi_get_value(arg_handle, ¤t_value);

/* Print "Hello" and the string */

vpi_printf("\nHello from the VPI!!\n");

vpi_printf(" - string passed was \"%s\"\n",

current_value.value.str);

return(0);

}

Comprehensive Verilog, V6.0A-60

Appendix A: The PLI

May 2001

double real;
...

} value;
} s_vpi_value, *p_vpi_value;

The format field indicates the format in which to retrieve the argument's value.
The value field, which is a union, will contain the value in the specified format.

Finally, vpi_printf is similar to the stand C printf function, except that it writes to
the Verilog simulator's console and/or log file.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-61
May 2001

C Test Fixtures

Notes:

In the final part of this PLI introduction we are going to see some techniques that
can be used for writing tests in C.

As we have seen, one limitation of the Verilog language is the lack of built in
system tasks to read text files. One of the most useful applications of the Verilog
PLI is to be able to use the full text processing capabilities of C in a Verilog test
fixture. This enables us to read test patterns and expected results from files, and
also to read test scripts. It would be much harder to do this without using the PLI.

As well as being able to read (and write) text and binary data files, the PLI enables
you to use existing C functions - or write new ones - that model the system in
which your design resides. Again, this is often much easier than translating such

A-42 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

C Test Fixtures

♦ Reading (and writing) files
� ... when $readmemb/h is not sufficient
� Test patterns and expected results
� Binary data
� Test “scripts”

♦ Modelling in C
� Use existing functions
� Use C instead of Verilog

Comprehensive Verilog, V6.0A-62

Appendix A: The PLI

May 2001

models into Verilog. It also makes it possible for system engineers, who may have
a working knowledge of C, but not of Verilog, to create tests.

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-63
May 2001

Generating Stimulus in C

Notes:

Here is a C function that generates the next test pattern in a sequence when it is
called. The pattern is applied to the three inputs using tf_putp.

The function returns 1 if a pattern was applied successfully, and 0 when there are
no more patterns to be generated.

A-43 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Generating Stimulus in C

#include <veriuser.h>

#define A 2
#define B 3
#define OP 4

int NextPattern(void) {

static int I = 0, J = 0, K = 0;
const int lookup[8] = {
0x0, 0x1, 0x3, 0x8, 0xf, 0x80, 0xf8, 0xff

};

tf_putp(B, lookup[I]);
tf_putp(A, lookup[J]);
tf_putp(OP, K);

if (++K == 16) {
K = 0;
if (++J == 8) {

J = 0;
if (++I == 8)

return 0;
}

}
return 1;

}

TF RoutinesTF Routines

A

B

Op

Apply values of I, J, K to inputs A, B, OpApply values of I, J, K to inputs A, B, Op

Calculate next values of I, J, KCalculate next values of I, J, K

Return 0 when no more valuesReturn 0 when no more values

Comprehensive Verilog, V6.0A-64

Appendix A: The PLI

May 2001

Applying C Stimulus

Notes:

The test patterns are applied by calling NextPattern repeatedly. This is done by the
misctf routine, which also schedules a callback of itself one period after applying
the pattern. This continues until the NextPattern function signals that there are no
more patterns to apply.

The first pattern is applied by the calltf routine, test_CALLTF, scheduling a
callback of the misctf routine, test_MISCTF.

A-44 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Applying C Stimulus

#define PERIOD 1

int period;

int test_CALLTF (int data, int reason)
{
/* Find the clock period */
period = tf_getp(PERIOD);

/* Force callback of test_MISCTF to start applying patterns*/
tf_setdelay(0);

}

int test_MISCTF (int data, int reason)
{
if (reason == reason_reactivate)

/* Apply next pattern */
if (! NextPattern())
io_printf("No more patterns\n");

else
/* Force callback after a period's delay */
tf_setdelay(period);

}

Appendix A: The PLI

Comprehensive Verilog, V6.0 A-65
May 2001

Test Fixture for C Stimulus

Notes:

Here is the Verilog test fixture that launches the PLI application that applies the
patterns. The user-defined system task $test is called just once and this call kicks
off the repeated calls to NextPattern, as has been described.

In this example, the clock is generated in the test fixture, although it too could be
generated in C.

A-45 • Comprehensive Verilog: The PLI Copyright © 2001 Doulos

Test Fixture for C Stimulus

`define PERIOD 10

module Test;

reg [7:0] A, B;
reg [3:0] Op;
reg Clock;
...

ALU alu (Clock, A, B, Op, ...);

initial
$Test(`PERIOD, A, B, Op);

initial
begin

Clock = 0;
forever `PERIOD/2 Clock = ~Clock;

end

endmodule

Called onceCalled once

Verilog provides the clockVerilog provides the clock

Comprehensive Verilog, V6.0A-66

Appendix A: The PLI

May 2001

Comprehensive Verilog, V6.0 B-1
May 2001

Appendix B
Gate-Level Verilog

Comprehensive Verilog, V6.0B-2

Appendix B: Gate-Level Verilog

May 2001

Gate-Level Verilog

Notes:

B-2 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

Gate-Level Verilog

Aim
♦ To get an appreciation of the capabilities of Verilog as a gate-
level simulation language, and to understand gate-level
simulation results.

Topics Covered
♦ Primitives
♦ Net types
♦ Drive strength
♦ UDPs
♦ Specify Blocks
♦ Libraries

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-3
May 2001

Structural Verilog

Notes:

A structural description defines an electronic circuit as a set of lower level blocks
connected together. These lower level blocks include Verilog's built-in primitive
gates and user-defined primitives. The structural parts of the Verilog language
support the description of many kinds of technology specific detail such as delays,
wired functions, timing constraints, pullups, and charge storage.

B-3 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

Structural Verilog
A

B
C

D
F

module AOAI (F, A, B, C, D);
input A, B, C, D;
output F;

wand #0.3 F;

and #0.5 (N1, A, B);
or #0.8 (F, N1, C);
pulldown (D);
not #0.5 (F, D);

endmodule

module AOAI (F, A, B, C, D);
input A, B, C, D;
output F;

wand #0.3 F;

and #0.5 (N1, A, B);
or #0.8 (F, N1, C);
pulldown (D);
not #0.5 (F, D);

endmodule

PrimitivesPrimitives

DelaysDelays

"Wired And" Net Type"Wired And" Net Type

Comprehensive Verilog, V6.0B-4

Appendix B: Gate-Level Verilog

May 2001

Primitives

Notes:

Verilog possesses a set of built in primitives representing basic logic gates,
unidirectional and bidirectional switches.

Primitives are instanced just like modules, with a few minor differences of syntax:

1. The primitive names themselves are reserved words in Verilog.

2. Primitive instances may have delays and strengths. This syntax for delays is
the same as the syntax for parameter overrides for module instances.

3. Unlike a module instance, an instance name is optional in a primitive
instance.

B-4 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

Primitives

and G1 (out, in1, in2);
and G2 (out, in1, in2, in3);
and (out, in1, in2, in3, in4);
not (out, in);
bufif0 (out, in, control);
pulldown (out);
cmos (out, in, ncontrol, pcontrol);
rtranif0 (inout1, inout2, control);

and G1 (out, in1, in2);
and G2 (out, in1, in2, in3);
and (out, in1, in2, in3, in4);
not (out, in);
bufif0 (out, in, control);
pulldown (out);
cmos (out, in, ncontrol, pcontrol);
rtranif0 (inout1, inout2, control);

and

nand

nor

or

xnor

xor

and

nand

nor

or

xnor

xor

pulldown

pullup

pulldown

pullup

buf

not

buf

not

cmos

nmos

pmos

rcmos

rnmos

rpmos

cmos

nmos

pmos

rcmos

rnmos

rpmos

pull gates:

n-output gates:

n-input
gates:

unidirectional
switches:tristate gates:

bufif0

bufif1

notif0

notif1

bufif0

bufif1

notif0

notif1

Bidirectional
switches:

rtran

rtranif0

rtranif1

tran

tranif0

tranif1

rtran

rtranif0

rtranif1

tran

tranif0

tranif1

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-5
May 2001

4. The order of the primitives' ports is fixed: outputs always come first,
followed by data inputs, and finally control inputs (if any). For the n-input
gates, the primitive has exactly one output and can have any number of
input ports, as shown for the and primitive opposite. For the n-output gates,
the primitive has exactly one input, but any number of outputs (all of which
have the same value! This feature has little practical application.)

Comprehensive Verilog, V6.0B-6

Appendix B: Gate-Level Verilog

May 2001

Net Types

Notes:

Nets are one of the main three data types in Verilog. (The others are registers and
Parameters.) Nets represent electrical connections between points in a circuit.

So far we have used wires to represent electrical connections. In Verilog, a wire is
a type of net, but there are also seven other net types, each modeling a different
electrical phenomenon. Wire is the default net type (undefined names used in a
connection list default to being one bit wires), and in all probability, 99% of the
nets in your Verilog descriptions will be wires. However, the remaining types of
net are important for modeling certain cases.

B-5 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

wire a, b, c;wire a, b, c;

Net Types

♦ There are 8 types of net, one of which is wire

Ordinary net, tristate bus

Wired and
Wired or

Pulldown resistor

Pullup resistor
Capacitive charge storage

Ground
Power

wire, tri

trireg

supply0

supply1

tri0

tri1

wor, trior

wand, triand

The default net typeThe default net type

SynonymsSynonyms

supply0 Gnd;supply0 Gnd;

wand p, q, r;wand p, q, r;

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-7
May 2001

wire, tri

The wire (synonymous with tri) models either a point-to-point electrical
connection, or a tristate bus with multiple drivers. In the event of a bus conflict,
the value of the wire will become 'bx.

wand, wor

The wand (synonym triand) and wor (synonym trior) behave like AND and OR
gates respectively when there exists more than one driver on the net.

tri0, tri1

The tri0 and tri1 nets behave like wires with a pulldown or pullup resistor
attached, i.e. when these nets are not being driven, the net floats to 0 or 1
respectively. In the same situation, a wire would have the value z.

The trireg net models capacitive charge storage and charge decay. When a trireg
net is not being driven, it retains its previous value.

The supply0 and supply1 nets represent ground and power rails respectively.

Comprehensive Verilog, V6.0B-8

Appendix B: Gate-Level Verilog

May 2001

Strengths

Notes:

Nets are driven either by being connected to the output of a primitive or by being
assigned in a continuous assignment. Both primitive and continuous assignments
can have a drive strength associated with them which is measured on a scale from
0 to 7, as shown in the table opposite. When there are multiple drivers on a net
with conflicting values, the highest strength wins.

• The default drive strength, as used in 99% of all Verilog nets, is strong.

• The supply strength is used for power and ground rails, e.g. net types
supply0 and supply1.

B-6 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

trireg (small) Node;trireg (small) Node;

assign (weak0, highz1)
g1 = a1 & b1,
g2 = a2 | b2;

assign (weak0, highz1)
g1 = a1 & b1,
g2 = a2 | b2;

and (strong0, pull1) (f1, a1, b1), (f2, a2, b2);and (strong0, pull1) (f1, a1, b1), (f2, a2, b2);

Strengths

Context
primitive/assign
primitive/assign

primitive/assign

primitive/assign
trireg

primitive/assign
trireg

trireg

Level Keyword

7

6
5

4

3
2
1
0

supply0

strong0
pull0

large

supply1
strong1
pull1

weak0 weak1
medium
small

highz0 highz1

Drive strengthsDrive strengths

Capacitative strengthCapacitative strength

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-9
May 2001

• The pull strength is used for pullup and pulldown resistors, e.g. the tri0 and
tri1 nets, and the pullup and pulldown primitives.

• The weak strength is a general purpose strength weaker than pull.

• The small, medium and large strengths are exclusively for the trireg net,
where they indicate the relative size of the capacitance.

• The highz strength represents high impedance.

Comprehensive Verilog, V6.0B-10

Appendix B: Gate-Level Verilog

May 2001

User Defined Primitives (UDPs)

Notes:

User defined primitives are the usual way to model library cells consisting of
small combinational functions, latches or flipflops. The only cell modeling tasks
for which they are unsuitable are arithmetic functions (e.g. adders), memories, and
large macrocells or megacells (e.g. UARTS, processor cores, etc).

A UDP effectively extends the set of primitives built into Verilog. It is defined by
means of a state table. A UDP is limited to a single output, and practical memory
limitations restrict the number of inputs to about 10. The state table cannot include
the Z state; a Z arriving on an input of a UDP is treated as an X.

The output can be either combinational or sequential. Entries in the state table can
be either level sensitive or edge sensitive. For sequential UDPs, the output must

B-7 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

User Defined Primitives (UDPs)

QD

Clock

Reset

primitive dtype_udp (Q, Reset, Clock, D);
input Reset, Clock, D;
output Q;
reg Q;

table
//Reset Clock D :oldQ: Q

0 ? ? : ? : 0; // Level sensitive reset
1 (01) 0 : ? : 0; // Clock a 0
1 (01) 1 : ? : 1; // Clock a 1

(?1) ? ? : ? : -; // Ignore +ve reset edge
1 (?0) ? : ? : -; // Ignore -ve clock edge
1 ? (??): ? : -; // Ignore data change
1 (0x) 0 : 0 : 0; // Avoid pessimism
1 (0x) 1 : 1 : 1; // Avoid pessimism
1 (x1) 0 : 0 : 0; // Avoid pessimism
1 (x1) 1 : 1 : 1; // Avoid pessimism

endtable

endprimitive

One output onlyOne output only

May be combinational, latched or edge-triggeredMay be combinational, latched or edge-triggered

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-11
May 2001

be defined as a reg, and each table entry includes the previous value of the output
(as well as the new value of the output).

Here are some of the conventions used to define state tables:

• 0 Logic0

• 1 Logic1

• x Equivalent to the Verilog unknown value 'bx

• ? Matches 0, 1 or x, not allowed in the output field

• - No change, only allowed in the output field

• (01) A transition from 0 to 1, not allowed in the output field

• (??) A transition from any value to any other value.

For any input conditions not included in the state table, the output will be set to
1'bx.

Level sensitive table entries (i.e. rows not including a transition) take precedence
over edge sensitive entries (i.e. rows that do include a transition.)

There is one important rule to understand when writing UDPs; if you specify the
output for one input transition, you must specify the output value for every
possible input transition. Otherwise, the output will be set to 1'bx unexpectedly!

Comprehensive Verilog, V6.0B-12

Appendix B: Gate-Level Verilog

May 2001

Gate and Net Delays

Notes:

Each Verilog primitive, continuous assignment and net can be assigned a delay.
Each Verilog event is delayed by the given amount as it passes through the
primitive or along the net. Gate and assign delays model propagation delays; net
delays model track delays.

Separate rise and fall delays can be specified. A rise delay simply means the
propagation delay (through the primitive or whatever) of an event where the
output is changing to 'b1. A rise delay is a propagation delay for a change to 1, not
the switching time of the output or the time for the output to cross some voltage
threshold.

B-8 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

nand #(3.0, 2.1) G1 (OUT, IN1, IN2);nand #(3.0, 2.1) G1 (OUT, IN1, IN2);

bufif1 #(1.2, 2.4, 6.0) (OUT, IN, ENB);bufif1 #(1.2, 2.4, 6.0) (OUT, IN, ENB);

trireg (large) #(0, 0, 100) Store;trireg (large) #(0, 0, 100) Store;

nand #(2:3:4, 3:4:5) (OUT, IN1, IN2);nand #(2:3:4, 3:4:5) (OUT, IN1, IN2);

always #(10.0 : 10.5 : 12.8)
Clock = ~Clock;

always #(10.0 : 10.5 : 12.8)
Clock = ~Clock;

Gate and Net Delays

RiseRise FallFall TurnoffTurnoff

Min:Typ:MaxMin:Typ:Max

DecayDecay

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-13
May 2001

For nets that can go high impedance, a turnoff or charge decay delay can be
specified.

Minimum, typical and maximum values can be given wherever you can write a
delay, including procedural delays (i.e. delays within initial and always blocks).

Comprehensive Verilog, V6.0B-14

Appendix B: Gate-Level Verilog

May 2001

Path Delays

Notes:

Verilog has two methods of specifying delays: distributed delays, and path delays.

With distributed delays, delays are assigned to individual primitives within a
network. The total delay from a module input to a module output is the sum of the
delays of the individual primitives on the path. For an example, see module AOAI
at the beginning of this section.

With path delays, delays are defined directly between module inputs and module
outputs, bypassing the network in between. This method is more flexible, since
two paths through the same primitives can have different delays, e.g. the paths
from A to F and from B to F opposite.

B-9 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

Path Delays

module AOAI (F, A, B, C, D);
...
specify

(A => F) = 1.2;
(B => F) = 1.3;
(C => F) = 0.8;
(D => F) = 0.6;

endspecify
enmodule

module AOAI (F, A, B, C, D);
...
specify

(A => F) = 1.2;
(B => F) = 1.3;
(C => F) = 0.8;
(D => F) = 0.6;

endspecify
enmodule

A
B
C

D

F

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-15
May 2001

Specify Blocks

Notes:

Specify blocks are the most accurate and powerful way to specify timing in
Verilog. They allow the specification of path delays, timing constraints,
independent delays for X and Z transitions, state dependent paths and pulse
rejection.

The philosophy behind specify blocks is to separate the description of timing from
the description of functionality. This makes is easier to code up timing
information directly from the information given on data sheets. It also means that
tools for timing verification and synthesis can make use of the Verilog modules.

B-10 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

module DType (Q, QB, Reset, Clock, D);
input Reset, Clock, D;
output Q, QB;
reg Notify;

dtype_udp (Q, Reset, Clock, D, Notify);
not (QB, Q);

specify
specparam TpLH_Q = 1.1, TpHL_Q = 0.9,

TpLH_QB = 0.7, TpHL_QB = 0.8,
Tp_R_Q = 0.5, Tp_R_QB = 0.4,
Tsetup = 0.8, Tpw = 1.5;

(Clock => Q) = (TpLH_Q, TpHL_Q);
(Clock => QB) = (TpLH_QB, TpHL_QB);
(Reset => Q) = Tp_R_Q;
(Reset => QB) = Tp_R_QB;
$setup(Data, posedge Clock, Tsetup, Notify);
$width(posedge Clock, Tpw);

endspecify
endmodule

Specify Blocks

Clock

Data

Tsetup Tpw

FunctionalityFunctionality

TimingTiming

Comprehensive Verilog, V6.0B-16

Appendix B: Gate-Level Verilog

May 2001

Specparams allow named constants to be defined inside a specify block, which
makes the code easier to read. The values of specparams can be overwritten
during back-annotation.

Timing checks are performed using system tasks that can only be called within a
specify block, e.g. $setup and $width check the setup time and minimum pulse
width respectively.

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-17
May 2001

Smart Paths

Notes:

Specify blocks support some very powerful and sophisticated methods of
specifying timing.

Independent delays can be specified for all possible transitions between the values
0, 1, Z and X. This can be a list of 2 values (transitions to 0 and 1), 3 values
(transitions to 0, 1 and Z), 6 values (transitions between 0, 1 and Z) or 12 values
(transitions between 0, 1, Z and X). An example of this latter case is given
opposite. It is important to use specparams to give meaningful names to the
values!

The *> symbol in the path specification indicates a full connection, i.e. every
possible path from the inputs on the left to the outputs on the right (3x2=6 paths in

B-11 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

Smart Paths

♦ Full connections and X, Z transitions

♦ State dependant path delays (SDPDs)

♦ Edge sensitive paths (don’t affect simulation)

(A, B, C *> F, G) = (t01, t10, t0Z, tZ1, t1Z, tZ0,
t0X, tX1, t1X, tX0, tXZ, tZX);

(A, B, C *> F, G) = (t01, t10, t0Z, tZ1, t1Z, tZ0,
t0X, tX1, t1X, tX0, tXZ, tZX);

specify
specparam TpLH = 1.2, TpHL = 1.0,
(posedge Clock => (Q +: D)) = (TpLH, TpHL);
(posedge Clock => (QB -: D)) = (TpLH, TpHL);

endspecify

specify
specparam TpLH = 1.2, TpHL = 1.0,
(posedge Clock => (Q +: D)) = (TpLH, TpHL);
(posedge Clock => (QB -: D)) = (TpLH, TpHL);

endspecify

specify
specparam TpALH = 1.2, TpAHL = 1.0,

TpBLH = 1.1, TpBHL = 0.9;
if (IN1) (IN2 => OUT) = (TpALH, TpAHL);
if (~IN1) (IN2 => OUT) = (TpBLH, TpBHL);
if (IN2) (IN1 => OUT) = (TpALH, TpAHL);
if (~IN2) (IN1 => OUT) = (TpBLH, TpBHL);

endspecify

specify
specparam TpALH = 1.2, TpAHL = 1.0,

TpBLH = 1.1, TpBHL = 0.9;
if (IN1) (IN2 => OUT) = (TpALH, TpAHL);
if (~IN1) (IN2 => OUT) = (TpBLH, TpBHL);
if (IN2) (IN1 => OUT) = (TpALH, TpAHL);
if (~IN2) (IN1 => OUT) = (TpBLH, TpBHL);

endspecify

Comprehensive Verilog, V6.0B-18

Appendix B: Gate-Level Verilog

May 2001

this example). The alternative is the symbol => which represents a parallel
connection i.e. the input and output must both be vectors of the same length, and
the number of paths equals the number of bits in each vector.

State dependent path delays allow a path to be made conditional on the state of
another input. Thus, different delays can be specified according to the value on
another input.

Edge sensitive path delays include functional as well as timing information. The
edge sensitive path delays shown opposite indicate that there are delays from the
rising edge of Clock to Q and to QB; also, the value of Q is derived from the value
of D with no inversion, and the value of QB is derived from D with inversion.
Edge sensitive path information has no affect on simulation, but the information
can be used for Timing Verification.

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-19
May 2001

Pulse Rejection

Notes:

Delays on Verilog primitives and specify blocks are inertial, i.e. pulses less than
the delay get filtered out. This pulse rejection is programmable, and can be altered
via the specify block.

To change the pulse rejection period, you must use a specparam with the
conventionally defined name PATHPULSE$. The value of the specparam can be
either a single reject limit, or a list of two values, a reject limit and an error limit.
Pulses shorter than the reject limit are filtered out. Pulses longer than the reject
limit but shorter than the error limit are transmitted as X pulses. Pulses longer than
the error limit are transmitted as solid pulses, even if they are shorter than the path
delay.

B-12 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

Pulse Rejection

DelayDelay

Error
Limit

Error
Limit

Reject
RejectLimit
Limit

A

F

specify
specparam
Delay = 2.0,
RejectLimit = 0.6, ErrorLimit = 1.4,

PATHPULSEAF = (RejectLimit, ErrorLimit),
PATHPULSEBF = RejectLimit,
PATHPULSE$ = RejectLimit;

(A, B, C, D *> F) = Delay;
endspecify

specify
specparam
Delay = 2.0,
RejectLimit = 0.6, ErrorLimit = 1.4,

PATHPULSEAF = (RejectLimit, ErrorLimit),
PATHPULSEBF = RejectLimit,
PATHPULSE$ = RejectLimit;

(A, B, C, D *> F) = Delay;
endspecify

Comprehensive Verilog, V6.0B-20

Appendix B: Gate-Level Verilog

May 2001

Pulse rejection can be defined for individual paths by identifying the path within
the name of the specparam. E.g. the specparam PATHPULSEAF defines pulse
rejection for the path from input port A to output port F.

Appendix B: Gate-Level Verilog

Comprehensive Verilog, V6.0 B-21
May 2001

A Typical Cell Library Model

Notes:

Here is the skeleton code of a typical Verilog cell library model.

Notice that the module is enclosed in the compiler directives
`celldefine...`endcelldefine. These tell the PLI that the module is a cell for back
annotation purposes. The `resetall directive cancels any previous directives so that
the compiler is in a known state.

Internally, the module is divided into two parts - the functionality and the timing.
The timing is divided into three parts - parameters, path delays and timing checks.
It is common to include specparams giving general information about the model
such as the version number.

B-13 • Comprehensive Verilog: Gate-Level Verilog Copyright © 2001 Doulos

A Typical Cell Library Model
`resetall
`celldefine
`timescale 1ps/1ps
module DtypeR (Q, QB, R, Clk, D);

output Q, QB;
input R, Clk, D;

...

specify
specparam FOUNDRY = "ACME SILICON",

VERSION = "5.3";
// Delays
// Constraints

(posedge Clk => (Q +: D)) = (TpLH, TpHL);
...

$recovery(posedge R, posedge Clk, Trec);
...

endspecify
endmodule
`endcelldefine

DirectivesDirectives

FunctionalityFunctionality

Timing etc.Timing etc.

Comprehensive Verilog, V6.0B-22

Appendix B: Gate-Level Verilog

May 2001

Comprehensive Verilog V 6.0
May 2001

Part Number: 069287

	TABLE OF CONTENTS
	Module 1
	Module 2
	Module 3
	Module 4
	Module 5
	Module 6
	Module 7
	Module 8
	Module 9
	Module 10
	Module 11
	Module 12
	Module 13
	Appendix A
	Appendix B

