
Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Intro to the Shell
In case you want to look at this when we’re not

available...

J. Koziej C. Van West

The Cooper Union

Summer ‘22

1 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Welcome to the shell!

The shell looks like this:

user@host:dir$ _

user is your username, host is the hostname of the
computer, and dir is your current directory (generally
starts at ~, an alias for /home/user/). _ represents your
cursor position.

2 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Talking to it

Typing a command at the prompt and pressing Enter
runs it – for example,

user@host:~$ date
_

(typing date, then pressing Enter) might give the output

user@host:~$ date
Thu Jul 14 07:44:41 PM EDT 2022
user@host:~$ _

3 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Talking to it

When typed again, the date will (of course) change:

user@host:~$ date
Thu Jul 14 07:44:41 PM EDT 2022
user@host:~$ date # let's just make sure
Thu Jul 14 07:45:16 PM EDT 2022
user@host:~$ _

Note that any text following a # is considered a comment
and ignored by the shell. I’ll use comments to make brief
notes on commands throughout, so know they’re not
necessary if you just want to run a command.

4 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

How to get information

Commands are usually documented via another
command, called man. If you don’t know how to use a
command, typing man <command> is a quick way to find
out. If we didn’t know how to use date, we could view the
manual page by running

user@host:~$ man date
_

5 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

How to get information

This would open less, a file-viewing command, with the
documentation file (known as a manpage):

DATE(1) User Commands DATE(1)

NAME
date - print or set the system

date and time

SYNOPSIS
date [OPTION]... [+FORMAT]
date [-u|--utc|--universal]

...

6 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Command structure

The first word in a command is its name (the name of the
program to be run, in fact), and all subsequent words are
known as flags or arguments. For example,

user@host:~$ echo hello world
hello world
user@host:~$ _

is the result of running the command echo with the
arguments hello and world.

7 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Command structure

Flags are a subset of arguments; the term usually refers
to predefined options preceded by - or --. For example,
running

user@host:~$ date --utc
Fri Jul 15 12:09:22 AM UTC 2022
user@host:~$ _

tells date to give the date in universal time by passing it
the --utc flag.
Flags often have a short and a long version; -v and
--verbose are often equivalent, for example. Flags may
also sometimes be combined: rm -r -v -f may be
written rm -rvf. Different commands have different
ways of interpreting flags, so check the manual page if
you’re not sure!

8 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Directories and navigation

The shell sees space as a tree:

user@host:~$ cbonsai -pl -L16 -b2 -s6

&&& & &
& &&\ &&&& &&

&&&&&_\&& &/&&\ & &
& &&&&_&&&&|&\|/~ &

& && \//&&&
& \/&&&& &

/~~
(---./~~~\.---)
()
(_________)

user@host:~$ _

9 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Looking around
All the “stuff” on the machine – its files and directories –
are contained within other directories, leading up to the
root directory (denoted /, a single slash). The program
tree is a great way to visualize this:

user@host:~$ tree
.
├── garbage
│ └── gpa.txt
└── my_stuff

├── schedule.pdf
└── todo

└── list.txt

3 directories, 3 files
user@host:~$ _

10 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Looking around
The most used command for looking around is ls, which
prints the contents of a single directory. Used on the
directory tree above, you might see

user@host:~$ ls
garbage my_stuff
user@host:~$ ls -a # show hidden files
. .. garbage my_stuff
user@host:~$ ls -a my_stuff # list a directory
. .. schedule.pdf todo
user@host:~$ ls -aF my_stuff # classify files
./ ../ schedule.pdf todo/
user@host:~$ _

Around 12% of my own command history consists of ls
with occasional flags. It is the closest thing the shell has
to a handheld lantern.

11 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Changing directories
You can see where you are in the tree using pwd, and
move around using cd. In the example tree from above,
you might navigate like so:

user@host:~$ pwd
/home/user
user@host:~$ cd garbage
user@host:~$ pwd
/home/user/garbage
user@host:~$ ls
gpa.txt
user@host:~$ cd ../my_stuff/todo
user@host:~$ pwd
/home/user/my_stuff/todo
user@host:~$ ls
list.txt
user@host:~$ _

12 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Changing directories

There are a few special directory names you should be
aware of:

. the directory you’re in
.. the directory above yours
~ your home directory (as a prefix)
/ the root directory

For example, cd .. would move you one directory
upwards, and cd ../.. would move you two directories
upwards: it looks in .. (the parent directory) to find
another .. (the parent of the parent directory) and goes
there. cd / would take you to the root directory, and
cd ~ would take you home.

13 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Dealing with files

Files can be copied using cp, moved using mv, and
deleted (forever, so be careful) using rm:

user@host:~$ ls
original.txt
user@host:~$ cp original.txt copy.txt
user@host:~$ ls
copy.txt original.txt
user@host:~$ mv original.txt moved_from.txt
user@host:~$ ls
copy.txt moved_from.txt
user@host:~$ rm moved_from.txt
user@host:~$ ls
copy.txt
user@host:~$ _

14 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Dealing with files

Two common commands to view a file’s contents are cat,
which prints the file out, and less, which opens it in an
interactive viewer:

user@host:~$ ls
secrets.txt
user@host:~$ cat secrets.txt
What makes you think that we would just tell you?
Try looking harder.
user@host:~$ ls -a
. .. .actual_secrets secrets.txt
user@host:~$ less .actual_secrets
_

15 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Creating and editing

There are many ways to create or edit a file. Some
involve streams (as you’ll see in the next section). The
most direct way, however, is to use a command-line
editor. Here’s a brief list:

nano intuitive, integrated help bar
vi powerful, but takes a while to learn

emacs similar to vi in difficulty
ed don’t even think about it

16 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Creating and editing

For example, to jot down some curmudgeonly thoughts
using nano, simply run

user@host:~$ nano complaints.txt
_

and have fun. The file does not have to exist – it will be
created if necessary when you save it.

17 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Pipes and streams

Most shell commands are capable of taking an input and
producing an output – cat takes a file and prints it out,
echo prints its arguments (unless you invoke it with
none!), wc prints out line, word, and byte counts for its
input, grep searches for matching text in a stream, and
so on.
So, of course, you can chain these commands together.

18 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

What is a stream?

A stream is a queue of data. Stuff (usually text, for our
purposes) is written to the stream at one end and can be
read from the stream at the other.
The two streams that matter most to shell users are the
standard-input and standard-output streams, known as
stdin and stdout. (There is a third, stderr, which is
mostly for error handling.) For example, cat just writes
the contents of its input file to stdout.

19 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Pipes

Sometimes you want the output of one command to go to
the input of another command. This is done using a pipe,
denoted with a vertical bar (|):

user@host:~$ ls -a1 # all files, one per line
.
..
garbage
my_stuff
user@host:~$ ls -a1 | grep my # only MY stuff
my_stuff
user@host:~$ _

The | tells the shell to pipe the output of ls -a1 (its
stdout stream) to the input of grep my.

20 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

More stream destinations

Streams can also come from and go to files. The
operators are as follows:

< take stdin from file
> send stdout to file
>> same as >, but append

All of these operators are followed by a file name,
indicating where to read from/write to. Several of these
may be used in one command, along with various pipes,
to accomplish whatever you’re trying to do.

21 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

More stream destinations

Say you want to include a list of files in a story you’re
writing. You could use ls and a redirect to append a
readout of your current directory to it:

user@host:~$ cat story.txt
All I had to my name was:
user@host:~$ ls -F >> story.txt
user@host:~$ cat story.txt
All I had to my name was:
garbage/
my_stuff/
story.txt
user@host:~$ nano story.txt
_

22 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

More stream destinations

If you wanted to get a list of all text and data files on your
system and save them, you could run

find / | grep -E '(.txt|.dat)$' > files.list

which would pipe the output of find to the input of grep,
and the output of grep to the file called files.list,
overwriting whatever content it had before. You could
then run

grep my < files.list | less

to view a list of all the files you just found whose paths
contain “my”.

23 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Handy tricks

There are certainly more, but here are my top three:
• Pressing Tab will often auto-complete command
names, filenames, arguments, etc. I usually just type
the first few letters of whatever I want and have the
shell write the rest.

• Pressing ↑ will recall the last command you typed
(useable multiple times!).

• Pressing Ctrl-r will allow you to search your
command history for something you did before.

24 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Finally: a brief incomplete
summary

man get info about command
ls list files

pwd print working directory
cd change directories
cp copy file
mv move file
rm remove file

nano edit file
cat, less view file

Table 1: Useful shell commands.

25 /26

Intro to the
Shell

J. Koziej, C. Van
West

Welcome to the
shell!
Talking to it

How to get
information

Command
structure

Directories and
navigation
Looking around
Changing
directories

Dealing with
files
Creating and
editing

Pipes and
streams
What is a stream?
Pipes
More stream
destinations

Handy tricks

Finally: a brief
incomplete
summary

Finally: a brief incomplete
summary

| pipe stdout to stdin
< take stdin from file
> send stdout to file
>> same as >, but append

Table 2: Stream redirects.

↑ recall last command
Tab autocomplete text under cursor

Ctrl-r reverse history search
Table 3: Trick reminders.

Also see Jacob’s shell cheatsheet! He put a lot of work
into it.

26 /26

	Welcome to the shell!
	Talking to it

	How to get information
	Command structure
	Directories and navigation
	Looking around
	Changing directories

	Dealing with files
	Creating and editing

	Pipes and streams
	What is a stream?
	Pipes
	More stream destinations

	Handy tricks
	Finally: a brief incomplete summary

