
Shell Cheat Sheet Jacob Koziej (EE ’25) CC BY-NC-SA 4.0

File Paths
/ — root directory
. — current working directory
.. — parent directory of the current working directory
/absolute/path — absolute path
relative/path — relative path in the current working directory
./relative/path — relative path in the current working directory
../relative/path — relative path in the parent directory
Tips:

• absolute paths always start with /
• you can chain together relative path components with /

Command Structure
cat︸︷︷︸

command

-A︸︷︷︸
short flag

--number︸ ︷︷ ︸
long flag

hello-world.c︸ ︷︷ ︸
file argument

-afhlNR︸ ︷︷ ︸
you can chain together short flags

--port 31415︸ ︷︷ ︸
some flags take arguments

-p31415︸ ︷︷ ︸
spaces for short flag aruments aren’t mandatory

if=/dev/zero︸ ︷︷ ︸
sometimes you’ll need to use = to specify an argument

i love cooper union ...︸ ︷︷ ︸
most commands can take more than one argument

Navigation
pwd — print name of working directory
ls — list directory contents
ls -al — list all directory contents in the long listing format
tree — list contents of directories in a tree-like format
cd — change the working directory to $HOME
cd dir/ — change the working directory to dir

cd - — change the working directory to the previous directory
clear — clear the terminal screen

File Manipulation
touch grass — create or update timestamps of a file named grass

mkdir dir/ — create a directory named dir

mkdir -p path/to/dir/ — create all parent directories up to dir

rmdir dir/ — remove an empty directory named dir

rm foo — remove a file named foo

rm -rf dir/ — recursively and forcefully remove dir

cp src dst — copy src to dst

cp -r src/ dst — recursively copy src to dst

mv src dst — move src to dst

mv foo dir/ — move foo into dir

ln -s src dst — create a symbolic link from src to dst

readlink dst — resolve where link dst points to
unlink dst — remove link dst

cat foo — print the contents of foo to stdout

head foo — print the first 10 lines of foo to stdout

tail foo — print the last 10 lines of foo to stdout

grep text foo — search foo for instances of text
grep -r text dir/ — recursively search files in dir for text
wc foo — get the word count of foo
wc -l foo — get the line count of foo
sort foo — sort the lines of foo
sort -r foo — sort the lines of foo in reverse
Tips:

• you cannot restore files deleted with rm
• both cp and mv will overwrite an existing destination file
• files don’t need extension names
• directories don’t need a trailing / when used as an argument
• everything is technically a file in UNIX-like environments

IO Streams
cat foo > out — redirect stdout of cat to file out

cat foo >> out — append stdout of cat to file out

cat foo 2> /dev/null — discard stderr of cat
grep text foo | sort — pipe stdout of grep to stdin of sort
Tips:

• you can chain multiple commands together with multiple pipes
• you can pipe into tee to view the output of a redirection

File Permissions
-rwxr-xr-- | rwx r-x r--

|\_/\_/\_/ | ||| ||| |||

| | | | | 421 401 400 <-- dec notation

| | | +> other (o) | 111 101 100 <-- bin notation

| | | | \_/ \_/ \_/ +---------------

| | +---> group (g) | | | | | r <-> read

| | | v v v | w <-> write

| +------> user (u) | 7 5 4 | x <-> execute

| +---------------+ - <-> denied

+--------> file type (regular file, directory, etc...)

chmod 644 foo — change foo’s permissions to rw-r--r--

chmod +x foo — set foo’s executable bit for everyone
chmod g-w foo — deny writes to foo by users in foo’s group
chown jacob foo — change foo’s owner to jacob

chgrp wheel foo — change foo’s group to wheel

chown jacob:wheel foo — set owner to jacob and group to wheel

Environment Variables
$HOME — user home directory
$PATH — executable path
echo $FOO — print the value of FOO to stdout

env — view current environment variables
export FOO=bar — set environment variable FOO to bar

export PATH="$HOME/bin:$PATH" — add $HOME/bin to PATH

unset FOO — unset environment variable FOO

Tips:
• Anything inside single quotes is treated as a string literal
• Some environment variables modify program behavior
• A leading $ expands a shell variable
• Use ${FOO} when expanding next to trailing letters

Shell Expansions
~ — expands to the value of $HOME
!! — previous command
!string — last command starting with string

$? — exit code of the last command
$(cat foo) — treat the output of cat foo as a string
* — expand to all files in the current working directory
foo* — expand to all files that start with foo

*.c — expand to all files that end with .c

Reading the Manual
man man — read man’s manual
man cat — read cat’s manual
man stdint.h — read stdint.h’s manual
man printf — read the shell’s printf manual
man 3 printf — read libc’s printf() manual
man 2 write — read the system’s write() manual
Tips:

• When in doubt, read the man page
• If there’s no man page, check a command’s -h/--help flag
• Adding a number to man specifies a different section

External Resources
explainshell.com — explain shell commands
missing.csail.mit.edu — MIT’s Missing Semester of CS
devhints.io/bash — Bash scripting cheatsheet
github.com/dylanaraps/pure-sh-bible — pure sh bible

Spot any errors or have a suggestion?
Shoot me an email at <jacobkoziej@gmail.com> or <jacob.koziej@cooper.edu>
v0.1.2 — 2022-08-07

https://jacobkoziej.xyz/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://explainshell.com/
https://missing.csail.mit.edu/
https://devhints.io/bash
https://github.com/dylanaraps/pure-sh-bible
mailto:jacobkoziej@gmail.com
mailto:jacob.koziej@cooper.edu

